Advanced Algorithms - COMS31900

Hashing part two

Static Perfect Hashing

Raphaël Clifford

Slides by Benjamin Sach

Dictionaries and Hashing recap

- A dynamic dictionary stores (key, value)-pairs and supports:

```
add(key, value), lookup(key) (which returns value) and delete(key)
```

Universe U of u keys.

Hash table T of size $m \geqslant n$.

Collisions were fixed by chaining
(building linked lists)

A hash function maps a key x to position $h(x)$

$$
- \text { i.e } T[h(x)]=(\text { key, value }) .
$$

ne at a time.

A set H of hash functions is weakly universal if for any two keys $x, y \in U$ (with $x \neq y$),

$$
\operatorname{Pr}(h(x)=h(y)) \leqslant \frac{1}{m}
$$

(h is picked uniformly at random from H)

Using weakly universal hashing:
For any n operations, the expected run-time is $O(1)$ per operation.

But this doesn't tell us much about the worst-case behaviour

Static Dictionaries and Perfect hashing

- A static dictionary stores (key, value)-pairs and supports:
lookup(key) (which returns value) - no inserts or deletes are allowed

Universe U of u keys.

Hash table T of size $m \geqslant n$.

Collisions were fixed by chaining
(building linked lists)

A hash function maps a key x to position $h(x)$
-i.e $T[h(x)]=($ key, value $)$.

THEOREM
The FKS hashing scheme:

- Has no collisions
- Every lookup takes $O(1)$ worst-case time,
- Uses $O(n)$ space,
- Can be built in $O(n)$ expected time.

The rest of this lecture is devoted to the FKS scheme

The construction is based on weak universal hashing
(with an $O(1)$ time hash function)

Perfect hashing - a first attempt

A set H of hash functions is weakly universal if for any two keys $x, y \in U(x \neq y)$,

$$
\operatorname{Pr}(h(x)=h(y)) \leqslant \frac{1}{m} \quad \text { where } h \text { is picked uniformly at random from } H
$$

Step 1: Insert everything into a hash table of size $m=n$ using a weakly universal hash function

Step 2: Check for collisions
Step 3: Repeat if necessary

How many collisions do we get on average?

where indicator random variable $I_{x, y}=1$ iff $h(x)=h(y)$.

Perfect hashing - a second attempt

A set H of hash functions is weakly universal if for any two keys $x, y \in U(x \neq y)$,

$$
\operatorname{Pr}(h(x)=h(y)) \leqslant \frac{1}{m} \quad \text { where } h \text { is picked uniformly at random from } H
$$

Step 1: Insert everything into a hash table of size $m=n^{2}$
using a weakly universal hasnfunction
Step 2: Check for collisions
Step 3: Repeat if necessary

How many collisions do we get on average?

Expected construction time

Step 1: Insert everything into a hash table of size $m=n^{2}$ using a weakly universal hash function

Step 2: Check for collisions
Step 3: Repeat if there was a collision

How many times do we repeat on average?

The expected number of collisions: $\mathbb{E}(C) \leqslant \frac{1}{2}$

Markov's inequality

The probability of at least one collision: $\operatorname{Pr}(C \geqslant 1) \leqslant \frac{1}{2}$
The probability of zero collisions is at least $\frac{1}{2}$
i.e. at least as good as tossing a heads on a fair coin

$$
\begin{aligned}
& \mathbb{E}(\text { runs }) \leqslant \mathbb{E}(\text { coin tosses to get a heads })=2 \\
& \mathbb{E}(\text { construction time })=O(m) \cdot \mathbb{E}(\text { runs })=O(m)=O\left(n^{2}\right)
\end{aligned}
$$

\ldots and then the look-up time is always $O(1)$

Expected construction time

Step 1: Insert everything into a hash table of size $m=n$

 using a weakly universal hash functionStep 2: Check for collisions
Step 3: Repeat if there are more than n collisions

This looks rubbish but it will be useful in a bit!

How many times do we repeat on average?
The expected number of collisions: $\mathbb{E}(C) \leqslant \frac{n}{2}$
The probability of at least n collisions: $\operatorname{Pr}(C \geqslant n) \leqslant \frac{1}{2}$

The probability of at most n collisions is at least $\frac{1}{2}$
i.e. at least as good as tossing a heads on a fair coin
$\mathbb{E}($ runs $) \leqslant \mathbb{E}($ coin tosses to get a heads $)=2$
$\mathbb{E}($ construction time $)=O(m) \cdot \mathbb{E}($ runs $)=O(m)=O(n)$
... but the look-up time could be rubbish (lots of collisions)

Perfect hashing - attempt three

Step 1: Insert everything into a hash table, T, of size n using a weakly universal hash function, h

Let n_{i} be the number of items in $T[i]$
Step 2: The n_{i} items in $T[i]$ are inserted into another hash table T_{i} of size n_{i}^{2}
using another weakly universal hash function denoted h_{i} (there is one for each i)
(Step 3) Immediately repeat a step if either
a) T has more than n collisions
b) some T_{i} has a collision

The look-up time is always O(1)

1. Compute $i=h(x)$ (x is the key)
2. Compute $j=h_{i}(x)$
3. The item is in $T_{i}[j]$

Two questions remain:

What is the expected construction time?
What is the space usage?

Perfect Hashing - Space usage

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h
Step 2: The n_{i} items in $T[i]$ are inserted into another hash table T_{i} of size n_{i}^{2} using w.u hash function h_{i}
(Step 3) Immediately repeat if either
a) T has more than n collisions
b) some T_{i} has a collision

How much space does this use?
The size of T is $O(n)$
The size of T_{i} is $O\left(n_{i}^{2}\right)$
Storing h_{i} uses $O(1)$ space
how big is this?
So the total space is. . .

$$
O(n)+\sum_{i} O\left(n_{i}^{2}\right)=O(n)+O\left(\sum_{i} n_{i}^{2}\right)
$$

Perfect Hashing - Space usage

Storing h_{i} uses $O(1)$ space
how big is this?
So the total space is...

$$
O(n)+\sum_{i} O\left(n_{i}^{2}\right)=O(n)+O\left(\sum_{i} n_{i}^{2}\right)=O(n)
$$

Perfect Hashing - Expected construction time

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h
Step 2: The n_{i} items in $T[i]$ are inserted into another hash table T_{i} of size n_{i}^{2} using w.u hash function h_{i}
(Step 3) Immediately repeat if either
a) T has more than n collisions
b) some T_{i} has a collision

The expected construction time for T is $O(n)$
(we considered this on a previous slide)
The expected construction time for each T_{i} is $O\left(n_{i}{ }^{2}\right)$

- we insert n_{i} items into a table of size $m=n_{i}^{2}$
- then repeat if there was a collision
(we also considered this on a previous slide)
The overall expected constuction time is therefore:

$$
\mathbb{E}(\text { construction time })=\mathbb{E}\left(\text { construction time of } T+\sum_{i} \text { construction time of } T_{i}\right)
$$

Perfect Hashing - Expected construction time

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h
Step 2: The n_{i} items in $T[i]$ are inserted into another hash table T_{i} of size n_{i}^{2} using w.u hash function h_{i}
(Step 3) Immediately repeat if either
a) T has more than n collisions
b) some T_{i} has a collision

The expected construction time for T is $O(n)$
The expected construction time for each T_{i} is $O\left(n_{i}{ }^{2}\right)$
The overall expected construction time is therefore:

$$
\begin{aligned}
\mathbb{E}(\text { construction time }) & =\mathbb{E}\left(\text { construction time of } T+\sum_{i} \text { construction time of } T_{i}\right) \\
& =\mathbb{E}(\text { construction time of } T)+\sum_{i} \mathbb{E}\left(\text { construction time of } T_{i}\right) \\
& =O(n)+\sum_{i} O\left(n_{i}^{2}\right)=O(n)+O\left(\sum_{i} n_{i}^{2}\right)=O(n)
\end{aligned}
$$

Perfect Hashing - Summary

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h
Step 2: The n_{i} items in $T[i]$ are inserted into another hash table T_{i} of size n_{i}^{2} using w.u hash function h_{i}
(Step 3) Immediately repeat if either
a) T has more than n collisions
b) some T_{i} has a collision

Theorem

The FKS hashing scheme:

- Has no collisions
- Every lookup takes $O(1)$ worst-case time,
- Uses $O(n)$ space,
- Can be built in $O(n)$ expected time.

The look-up time is always $O(1)$

1. Compute $i=h(x)$ (x is the key)
2. Compute $j=h_{i}(x)$
3. The item is in $T_{i}[j]$
