

Advanced Algorithms – COMS31900

Probability recap.

Raphaël Clifford

Slides by Markus Jalsenius

Randomness and probability

The sample space S is the set of *outcomes* of an experiment.

The sample space S is the set of *outcomes* of an experiment.

EXAMPLES

Roll a die: $S = \{1, 2, 3, 4, 5, 6\}$.

The **sample space** S is the set of *outcomes* of an experiment.

EXAMPLES

Roll a die: $S = \{1, 2, 3, 4, 5, 6\}$.

Flip a coin: $S = \{H, T\}$.

The sample space S is the set of *outcomes* of an experiment.

EXAMPLES

Roll a die: $S = \{1, 2, 3, 4, 5, 6\}$.

Flip a coin: $S = \{H, T\}$.

Amount of money you can win when playing some lottery:

$$S = \{ £0, £10, £100, £1000, £10, 000, £100, 000 \}.$$

The sample space S is the set of *outcomes* of an experiment.

EXAMPLES

Roll a die: $S = \{1, 2, 3, 4, 5, 6\}$.

Flip a coin: $S = \{H, T\}$.

Amount of money you can win when playing some lottery:

$$S = \{ £0, £10, £100, £1000, £10, 000, £100, 000 \}.$$

For $x\in S$, the **probability** of x, written $\Pr(x)$, is a real number between 0 and 1, such that $\sum_{x\in S}\Pr(x)=1$.

The sample space S is the set of *outcomes* of an experiment.

EXAMPLES

Roll a die: $S = \{1, 2, 3, 4, 5, 6\}$.

Flip a coin: $S = \{H, T\}$.

Amount of money you can win when playing some lottery:

$$S = \{ £0, £10, £100, £1000, £10, 000, £100, 000 \}.$$

For $x\in S$, the **probability** of x, written $\Pr(x)$, is a real number between 0 and 1, such that $\sum_{x\in S}\Pr(x)=1$.

The sample space S is the set of *outcomes* of an experiment.

For $x\in S$, the **probability** of x, written $\Pr(x)$, is a real number between 0 and 1, such that $\sum_{x\in S}\Pr(x)=1$.

The sample space S is the set of *outcomes* of an experiment.

EXAMPLE

Roll a die: $S = \{1, 2, 3, 4, 5, 6\}$.

$$Pr(1) = Pr(2) = Pr(3) = Pr(4) = Pr(5) = Pr(6) = \frac{1}{6}$$
.

For $x\in S$, the **probability** of x, written $\Pr(x)$, is a real number between 0 and 1, such that $\sum_{x\in S}\Pr(x)=1$.

The sample space S is the set of *outcomes* of an experiment.

For $x\in S$, the **probability** of x, written $\Pr(x)$, is a real number between 0 and 1, such that $\sum_{x\in S}\Pr(x)=1$.

The sample space S is the set of *outcomes* of an experiment.

EXAMPLE

Flip a coin: $S = \{H, T\}$.

$$\Pr(\mathsf{H}) = \Pr(\mathsf{T}) = \frac{1}{2}.$$

For
$$x\in S$$
, the **probability** of x , written $\Pr(x)$, is a real number between 0 and 1 , such that $\sum_{x\in S}\Pr(x)=1$.

The sample space S is the set of *outcomes* of an experiment.

For $x\in S$, the **probability** of x, written $\Pr(x)$, is a real number between 0 and 1, such that $\sum_{x\in S}\Pr(x)=1$.

The sample space S is the set of *outcomes* of an experiment.

EXAMPLE

Amount of money you can win when playing some lottery:

$$S = \{ £0, £10, £100, £1000, £10, 000, £100, 000 \}.$$

$$Pr(\pounds 0) = 0.9, Pr(\pounds 10) = 0.08, \dots, Pr(\pounds 100,000) = 0.0001.$$

For
$$x\in S$$
, the **probability** of x , written $\Pr(x)$, is a real number between 0 and 1 , such that $\sum_{x\in S}\Pr(x)=1$.

The sample space is not necessarily *finite*.

The sample space is not necessarily *finite*.

EXAMPLE	
Flip a coin until first tail shows up	
inpla containing tan crieffe ap	

The sample space is not necessarily *finite*.

EXAMPLE

Flip a coin until first tail shows up:

$$S = \{\mathsf{T}, \mathsf{HT}, \mathsf{HHT}, \mathsf{HHHT}, \mathsf{HHHHT}, \mathsf{HHHHHT}, \dots \}.$$

The sample space is not necessarily *finite*.

EXAMPLE

Flip a coin until first tail shows up:

$$S = \{\mathsf{T}, \mathsf{HT}, \mathsf{HHT}, \mathsf{HHHT}, \mathsf{HHHHT}, \mathsf{HHHHHT}, \dots \}.$$

The sample space is not necessarily *finite*.

EXAMPLE

Flip a coin until first tail shows up:

$$S = \{\mathsf{T}, \mathsf{HT}, \mathsf{HHT}, \mathsf{HHHT}, \mathsf{HHHHT}, \mathsf{HHHHHT}, \dots \}.$$

$$\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n$$

The sample space is not necessarily *finite*.

EXAMPLE

Flip a coin until first tail shows up:

$$S = \{\mathsf{T}, \mathsf{HT}, \mathsf{HHT}, \mathsf{HHHT}, \mathsf{HHHHT}, \mathsf{HHHHHT}, \dots \}.$$

$$\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} \dots$$

The sample space is not necessarily *finite*.

EXAMPLE

Flip a coin until first tail shows up:

$$S = \{\mathsf{T}, \mathsf{HT}, \mathsf{HHT}, \mathsf{HHHT}, \mathsf{HHHHT}, \mathsf{HHHHHT}, \dots \}.$$

$$\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} \dots = 1$$

An **event** is a subset V of the sample space S.

An **event** is a subset V of the sample space S.

The probability of event V happening, denoted $\Pr(V)$, is

$$\Pr(V) = \sum_{x \in V} \Pr(x).$$

An **event** is a subset V of the sample space S.

The probability of event V happening, denoted $\Pr(V)$, is

$$\Pr(V) = \sum_{x \in V} \Pr(x).$$

EXAMPLE

Flip a coin 3 times: $S = \{\text{TTT}, \text{TTH}, \text{THT}, \text{HTT}, \text{HHT}, \text{HTH}, \text{THH}, \text{HHH}\}$

For each $x \in S$, $\Pr(x) = \frac{1}{8}$

An **event** is a subset V of the sample space S.

The probability of event V happening, denoted $\Pr(V)$, is

$$\Pr(V) = \sum_{x \in V} \Pr(x).$$

EXAMPLE

Flip a coin 3 times: $S = \{\text{TTT}, \text{TTH}, \text{THT}, \text{HTT}, \text{HHT}, \text{HTH}, \text{THH}, \text{HHH}\}$

For each $x \in S$, $\Pr(x) = \frac{1}{8}$

Define V to be the event "the first and last coin flips are the same"

An **event** is a subset V of the sample space S.

The probability of event V happening, denoted $\Pr(V)$, is

$$\Pr(V) = \sum_{x \in V} \Pr(x).$$

EXAMPLE

Flip a coin 3 times: $S = \{\text{TTT}, \text{TTH}, \text{THT}, \text{HTT}, \text{HTH}, \text{THH}, \text{HHH}\}$

For each $x \in S$, $\Pr(x) = \frac{1}{8}$

Define V to be the event "the first and last coin flips are the same"

in other words, $V = \{ \mathrm{HHH}, \mathrm{HTH}, \mathrm{THT}, \mathrm{TTT} \}$

An **event** is a subset V of the sample space S.

The probability of event V happening, denoted $\Pr(V)$, is

$$\Pr(V) = \sum_{x \in V} \Pr(x).$$

EXAMPLE

Flip a coin 3 times: $S = \{\text{TTT}, \text{TTH}, \text{THT}, \text{HTT}, \text{HHT}, \text{HTH}, \text{THH}, \text{HHH}\}$

For each $x \in S$, $\Pr(x) = \frac{1}{8}$

Define V to be the event "the first and last coin flips are the same"

in other words, $V = \{\mathsf{HHH}, \mathsf{HTH}, \mathsf{THT}, \mathsf{TTT}\}$

What is $\Pr(V)$?

An **event** is a subset V of the sample space S.

The probability of event V happening, denoted $\Pr(V)$, is

$$\Pr(V) = \sum_{x \in V} \Pr(x).$$

EXAMPLE

Flip a coin 3 times: $S = \{TTT, TTH, THT, HTT, HHT, HTH, THH, HHH\}$

For each $x \in S$, $\Pr(x) = \frac{1}{8}$

Define V to be the event "the first and last coin flips are the same"

in other words, $V = \{ HHH, HTH, THT, TTT \}$

What is $\Pr(V)$?

$$\Pr(V) = \Pr(\mathsf{HHH}) + \Pr(\mathsf{HTH}) + \Pr(\mathsf{THT}) + \Pr(\mathsf{TTT}) = 4 \times \frac{1}{8} = \frac{1}{2}.$$

A **random variable** (r.v.) Y over sample space S is a function $S \to \mathbb{R}$ i.e. it maps each outcome $x \in S$ to some real number Y(x).

A **random variable** (r.v.) Y over sample space S is a function $S \to \mathbb{R}$ i.e. it maps each outcome $x \in S$ to some real number Y(x).

The probability of
$$Y$$
 taking value y is $\Pr(Y=y) = \sum \Pr(x)$. $\{x \in S \text{ st. } Y(x) = y\}$

A **random variable** (r.v.) Y over sample space S is a function $S \to \mathbb{R}$ i.e. it maps each outcome $x \in S$ to some real number Y(x).

The probability of Y taking value y is $\Pr(Y=y) = \sum \Pr(x)$. $\{x \in S \text{ st. } Y(x) = y\}$

EXAMPLE

Two coin flips.

$oxed{S}$	Y
НН	2
нт	1
ТН	5
TT	2

A **random variable** (r.v.) Y over sample space S is a function $S \to \mathbb{R}$ i.e. it maps each outcome $x \in S$ to some real number Y(x).

The probability of Y taking value y is $\Pr(Y = y) = \sum \Pr(x)$.

$$\{x\in S \text{ st. } Y(x)=y\}$$

EXAMPLE

Two coin flips.

$oxed{S}$	Y
НН	2
нт	1
ТН	5
TT	2

sum over all values of x such that Y(x) = y

A **random variable** (r.v.) Y over sample space S is a function $S \to \mathbb{R}$ i.e. it maps each outcome $x \in S$ to some real number Y(x).

The probability of Y taking value y is $\Pr(Y = y) = \sum \Pr(x)$.

 $\{x \in S \text{ st. } Y(x) = y\}$

EXAMPLE

Two coin flips.

$oxed{S}$	Y
НН	2
нт	1
ТН	5
TT	2

sum over all values of x such that Y(x) = y

What is Pr(Y=2)?

A **random variable** (r.v.) Y over sample space S is a function $S \to \mathbb{R}$ i.e. it maps each outcome $x \in S$ to some real number Y(x).

The probability of Y taking value y is $\Pr(Y = y) = \sum \Pr(x)$.

$$\{x \in S \text{ st. } Y(x) = y\}$$

Two coin flips.

$oxed{S}$	Y
НН	2
нт	1
ТН	5
TT	2

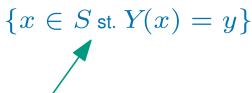
sum over all values of x such that Y(x) = y

What is $\Pr(Y=2)$?

$$\Pr(Y=2) = \sum_{x \in \{\mathsf{HH},\mathsf{TT}\}} \Pr(x)$$

A **random variable** (r.v.) Y over sample space S is a function $S \to \mathbb{R}$ i.e. it maps each outcome $x \in S$ to some real number Y(x).

The probability of Y taking value y is $\Pr(Y = y) = \sum \Pr(x)$.



Two coin flips.

$oxed{S}$	Y
НН	2
нт	1
ТН	5
TT	2

sum over all values of x such that Y(x) = y

What is $\Pr(Y=2)$?

$$\Pr(Y = 2) = \sum_{x \in \{\mathsf{HH},\mathsf{TT}\}} \Pr(x) = \frac{1}{4} + \frac{1}{4}$$

A **random variable** (r.v.) Y over sample space S is a function $S \to \mathbb{R}$ i.e. it maps each outcome $x \in S$ to some real number Y(x).

The probability of Y taking value y is $\Pr(Y = y) = \sum \Pr(x)$.

 $\{x \in S \text{ st. } Y(x) = y\}$

EXAMPLE

Two coin flips.

$oxed{S}$	Y
НН	2
ΗТ	1
ТН	5
TT	2

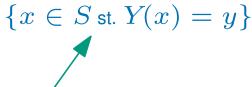
sum over all values of x such that Y(x) = y

What is $\Pr(Y=2)$?

$$\Pr(Y = 2) = \sum_{x \in \{\mathsf{HH},\mathsf{TT}\}} \Pr(x) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

A **random variable** (r.v.) Y over sample space S is a function $S \to \mathbb{R}$ i.e. it maps each outcome $x \in S$ to some real number Y(x).

The probability of Y taking value y is $\Pr(Y = y) = \sum \Pr(x)$.



Two coin flips.

$oxed{S}$	$oxed{Y}$
НН	2
ΗТ	1
ТН	5
ТТ	2

$$\Pr(Y=2) = \frac{1}{2}$$

sum over all values of x such that Y(x) = y

What is $\Pr(Y=2)$?

$$\Pr(Y = 2) = \sum_{x \in \{\mathsf{HH},\mathsf{TT}\}} \Pr(x) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

A **random variable** (r.v.) Y over sample space S is a function $S \to \mathbb{R}$ i.e. it maps each outcome $x \in S$ to some real number Y(x).

The probability of Y taking value y is $\Pr(Y=y) = \sum \Pr(x)$. $\{x \in S \text{ st. } Y(x) = y\}$

EXAMPLE

Two coin flips.

S	$oxed{Y}$
Н	2
ΗТ	1
ΤH	5
ΤТ	2

$$\Pr(Y=2) = \frac{1}{2}$$

A **random variable** (r.v.) Y over sample space S is a function $S \to \mathbb{R}$ i.e. it maps each outcome $x \in S$ to some real number Y(x).

The probability of Y taking value y is $\Pr(Y=y) = \sum \Pr(x)$. $\{x \in S \text{ st. } Y(x) = y\}$

EXAMPLE

Two coin flips.

$oxed{S}$	Y
Н	2
нт	1
ΤH	5
TT	2

$$\Pr(Y=2) = \frac{1}{2}$$

The **expected value** (the mean) of a r.v. Y, denoted $\mathbb{E}(Y)$, is

 \mathbb{F}

A **random variable** (r.v.) Y over sample space S is a function $S \to \mathbb{R}$ i.e. it maps each outcome $x \in S$ to some real number Y(x).

The probability of Y taking value y is $\Pr(Y=y) = \sum \Pr(x)$. $\{x \in S \text{ st. } Y(x) = y\}$

EXAMPLE

Two coin flips.

$oxed{S}$	Y
НН	2
ΗТ	1
ТН	5
TT	2

$$\Pr(Y=2) = \frac{1}{2}$$

The **expected value** (the mean) of a r.v. Y,

denoted $\mathbb{E}(Y)$, is

$$\mathbb{F}$$

$$\mathbb{E}(Y) = (2 \cdot \frac{1}{2}) + (1 \cdot \frac{1}{4}) + (5 \cdot \frac{1}{4}) = \frac{5}{2}$$

THEOREM (Linearity of expectation) -

Let Y_1, Y_2, \ldots, Y_k be k random variables. Then

$$\mathbb{E}\Big(\sum_{i=1}^k Y_i\Big) = \sum_{i=1}^k \mathbb{E}(Y_i)$$

THEOREM (Linearity of expectation) -

Let Y_1, Y_2, \ldots, Y_k be k random variables. Then

$$\mathbb{E}\Big(\sum_{i=1}^k Y_i\Big) = \sum_{i=1}^k \mathbb{E}(Y_i)$$

Linearity of expectation always holds,

(regardless of whether the random variables are independent or not.)

THEOREM (Linearity of expectation) -

Let Y_1, Y_2, \ldots, Y_k be k random variables. Then

$$\mathbb{E}\Big(\sum_{i=1}^k Y_i\Big) = \sum_{i=1}^k \mathbb{E}(Y_i)$$

Linearity of expectation always holds,

(regardless of whether the random variables are independent or not.)

EXAMPLE

Roll two dice. Let the r.v. Y be the sum of the values.

THEOREM (Linearity of expectation) -

Let Y_1, Y_2, \ldots, Y_k be k random variables. Then

$$\mathbb{E}\Big(\sum_{i=1}^k Y_i\Big) = \sum_{i=1}^k \mathbb{E}(Y_i)$$

Linearity of expectation always holds,

(regardless of whether the random variables are independent or not.)

EXAMPLE

Roll two dice. Let the r.v. Y be the sum of the values.

random variable

THEOREM (Linearity of expectation) -

Let Y_1, Y_2, \ldots, Y_k be k random variables. Then

$$\mathbb{E}\Big(\sum_{i=1}^k Y_i\Big) = \sum_{i=1}^k \mathbb{E}(Y_i)$$

Linearity of expectation always holds,

(regardless of whether the random variables are independent or not.)

EXAMPLE

Roll two dice. Let the r.v. Y be the sum of the values.

THEOREM (Linearity of expectation) -

Let Y_1, Y_2, \ldots, Y_k be k random variables. Then

$$\mathbb{E}\Big(\sum_{i=1}^k Y_i\Big) = \sum_{i=1}^k \mathbb{E}(Y_i)$$

Linearity of expectation always holds,

(regardless of whether the random variables are independent or not.)

EXAMPLE

Roll two dice. Let the r.v. Y be the sum of the values.

What is $\mathbb{E}(Y)$?

THEOREM (Linearity of expectation) -

Let Y_1, Y_2, \ldots, Y_k be k random variables. Then

$$\mathbb{E}\Big(\sum_{i=1}^k Y_i\Big) = \sum_{i=1}^k \mathbb{E}(Y_i)$$

Linearity of expectation always holds,

(regardless of whether the random variables are independent or not.)

EXAMPLE

Roll two dice. Let the r.v. Y be the sum of the values.

What is $\mathbb{E}(Y)$?

Approach 1: (without the theorem)

THEOREM (Linearity of expectation) -

Let Y_1, Y_2, \ldots, Y_k be k random variables. Then

$$\mathbb{E}\Big(\sum_{i=1}^k Y_i\Big) = \sum_{i=1}^k \mathbb{E}(Y_i)$$

Linearity of expectation always holds,

(regardless of whether the random variables are independent or not.)

EXAMPLE

Roll two dice. Let the r.v. Y be the sum of the values.

What is $\mathbb{E}(Y)$?

Approach 1: (without the theorem)

THEOREM (Linearity of expectation) -

Let Y_1, Y_2, \ldots, Y_k be k random variables. Then

$$\mathbb{E}\Big(\sum_{i=1}^k Y_i\Big) = \sum_{i=1}^k \mathbb{E}(Y_i)$$

Linearity of expectation always holds,

(regardless of whether the random variables are independent or not.)

EXAMPLE

Roll two dice. Let the r.v. Y be the sum of the values.

What is $\mathbb{E}(Y)$?

Approach 1: (without the theorem)

$$\mathbb{E}(Y) = \sum_{x \in S} Y(x) \cdot \Pr(x)$$

THEOREM (Linearity of expectation) -

Let Y_1, Y_2, \ldots, Y_k be k random variables. Then

$$\mathbb{E}\Big(\sum_{i=1}^k Y_i\Big) = \sum_{i=1}^k \mathbb{E}(Y_i)$$

Linearity of expectation always holds,

(regardless of whether the random variables are independent or not.)

EXAMPLE

Roll two dice. Let the r.v. Y be the sum of the values.

What is $\mathbb{E}(Y)$?

Approach 1: *(without the theorem)*

$$\mathbb{E}(Y) = \sum_{x \in S} Y(x) \cdot \Pr(x) = \frac{1}{36} \sum_{x \in S} Y(x)$$

THEOREM (Linearity of expectation) -

Let Y_1, Y_2, \ldots, Y_k be k random variables. Then

$$\mathbb{E}\Big(\sum_{i=1}^k Y_i\Big) = \sum_{i=1}^k \mathbb{E}(Y_i)$$

Linearity of expectation always holds,

(regardless of whether the random variables are independent or not.)

EXAMPLE

Roll two dice. Let the r.v. Y be the sum of the values.

What is $\mathbb{E}(Y)$?

Approach 1: (without the theorem)

$$\mathbb{E}(Y) = \sum_{x \in S} Y(x) \cdot \Pr(x) = \frac{1}{36} \sum_{x \in S} Y(x) = \frac{1}{36} (1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + 1 \cdot 12)$$

THEOREM (Linearity of expectation) -

Let Y_1, Y_2, \ldots, Y_k be k random variables. Then

$$\mathbb{E}\Big(\sum_{i=1}^k Y_i\Big) = \sum_{i=1}^k \mathbb{E}(Y_i)$$

Linearity of expectation always holds,

(regardless of whether the random variables are independent or not.)

EXAMPLE

Roll two dice. Let the r.v. Y be the sum of the values.

What is $\mathbb{E}(Y)$?

Approach 1: (without the theorem)

$$\mathbb{E}(Y) = \sum_{x \in S} Y(x) \cdot \Pr(x) = \frac{1}{36} \sum_{x \in S} Y(x) = \frac{1}{36} (1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + 1 \cdot 12) = 7$$

THEOREM (Linearity of expectation) -

Let Y_1, Y_2, \ldots, Y_k be k random variables. Then

$$\mathbb{E}\Big(\sum_{i=1}^k Y_i\Big) = \sum_{i=1}^k \mathbb{E}(Y_i)$$

Linearity of expectation always holds,

(regardless of whether the random variables are independent or not.)

EXAMPLE

Roll two dice. Let the r.v. Y be the sum of the values.

What is $\mathbb{E}(Y)$?

THEOREM (Linearity of expectation) -

Let Y_1, Y_2, \ldots, Y_k be k random variables. Then

$$\mathbb{E}\Big(\sum_{i=1}^k Y_i\Big) = \sum_{i=1}^k \mathbb{E}(Y_i)$$

Linearity of expectation always holds,

(regardless of whether the random variables are independent or not.)

EXAMPLE

Roll two dice. Let the r.v. Y be the sum of the values.

What is $\mathbb{E}(Y)$?

Approach 2: (with the theorem)

THEOREM (Linearity of expectation) -

Let Y_1, Y_2, \ldots, Y_k be k random variables. Then

$$\mathbb{E}\Big(\sum_{i=1}^k Y_i\Big) = \sum_{i=1}^k \mathbb{E}(Y_i)$$

Linearity of expectation always holds,

(regardless of whether the random variables are independent or not.)

EXAMPLE

Roll two dice. Let the r.v. Y be the sum of the values.

What is $\mathbb{E}(Y)$?

Approach 2: (with the theorem)

Let the r.v. Y_1 be the value of the first die and Y_2 the value of the second

THEOREM (Linearity of expectation) -

Let Y_1, Y_2, \ldots, Y_k be k random variables. Then

$$\mathbb{E}\Big(\sum_{i=1}^k Y_i\Big) = \sum_{i=1}^k \mathbb{E}(Y_i)$$

Linearity of expectation always holds,

(regardless of whether the random variables are independent or not.)

EXAMPLE

Roll two dice. Let the r.v. Y be the sum of the values.

What is $\mathbb{E}(Y)$?

Approach 2: (with the theorem)

Let the r.v. Y_1 be the value of the first die and Y_2 the value of the second

$$\mathbb{E}(Y_1) = \mathbb{E}(Y_2) = 3.5$$

THEOREM (Linearity of expectation) -

Let Y_1, Y_2, \ldots, Y_k be k random variables. Then

$$\mathbb{E}\Big(\sum_{i=1}^k Y_i\Big) = \sum_{i=1}^k \mathbb{E}(Y_i)$$

Linearity of expectation always holds,

(regardless of whether the random variables are independent or not.)

EXAMPLE

Roll two dice. Let the r.v. Y be the sum of the values.

What is $\mathbb{E}(Y)$?

Approach 2: (with the theorem)

Let the r.v. Y_1 be the value of the first die and Y_2 the value of the second

$$\mathbb{E}(Y_1)=\mathbb{E}(Y_2)=3.5$$

$$\mathrm{so}\,\mathbb{E}(Y)=\mathbb{E}(Y_1+Y_2)=\mathbb{E}(Y_1)+\mathbb{E}(Y_2)=7$$

An **indicator random variable** is a r.v. that can only be 0 or 1.

(usually referred to by the letter I)

An **indicator random variable** is a r.v. that can only be 0 or 1.

(usually referred to by the letter I)

Fact:
$$\mathbb{E}(I) = 0 \cdot \Pr(I = 0) + 1 \cdot \Pr(I = 1) = \Pr(I = 1)$$
.

An **indicator random variable** is a r.v. that can only be 0 or 1.

(usually referred to by the letter I)

Fact:
$$\mathbb{E}(I) = \Pr(I = 1)$$
.

An **indicator random variable** is a r.v. that can only be 0 or 1.

(usually referred to by the letter I)

Fact:
$$\mathbb{E}(I) = \Pr(I = 1)$$
.

Often an indicator r.v. I is associated with an event such that

$$I=1$$
 if the event happens (and $I=0$ otherwise).

An **indicator random variable** is a r.v. that can only be 0 or 1.

(usually referred to by the letter I)

Fact:
$$\mathbb{E}(I) = \Pr(I = 1)$$
.

Often an indicator r.v. I is associated with an event such that

$$I=1$$
 if the event happens (and $I=0$ otherwise).

Indicator random variables and linearity of expectation work great together!

An **indicator random variable** is a r.v. that can only be 0 or 1.

(usually referred to by the letter I)

Fact:
$$\mathbb{E}(I) = \Pr(I = 1)$$
.

Often an indicator r.v. I is associated with an event such that

I=1 if the event happens (and I=0 otherwise).

Indicator random variables and linearity of expectation work great together!

EXAMPLE

Roll a die n times.

An **indicator random variable** is a r.v. that can only be 0 or 1.

(usually referred to by the letter I)

Fact:
$$\mathbb{E}(I) = \Pr(I = 1)$$
.

Often an indicator r.v. I is associated with an event such that

I=1 if the event happens (and I=0 otherwise).

Indicator random variables and linearity of expectation work great together!

EXAMPLE

Roll a die n times.

What is the expected number rolls that show a value that is at least the value of the previous roll?

An **indicator random variable** is a r.v. that can only be 0 or 1.

(usually referred to by the letter I)

Fact:
$$\mathbb{E}(I) = \Pr(I = 1)$$
.

Often an indicator r.v. I is associated with an event such that

I=1 if the event happens (and I=0 otherwise).

Indicator random variables and linearity of expectation work great together!

EXAMPLE

Roll a die n times.

What is the expected number rolls that show a value that is at least the value of the previous roll?

An **indicator random variable** is a r.v. that can only be 0 or 1.

(usually referred to by the letter I)

Fact:
$$\mathbb{E}(I) = \Pr(I = 1)$$
.

Often an indicator r.v. I is associated with an event such that I=1 if the event happens (and I=0 otherwise).

Indicator random variables and linearity of expectation work great together!

EXAMPLE

Roll a die n times.

What is the expected number rolls that show a value that is at least the value of the previous roll?

$$\Pr(I_j=1)=\frac{21}{36}=\frac{7}{12}$$
. (by counting the outcomes)

An **indicator random variable** is a r.v. that can only be 0 or 1.

(usually referred to by the letter I)

Fact:
$$\mathbb{E}(I) = \Pr(I = 1)$$
.

Often an indicator r.v. I is associated with an event such that

I=1 if the event happens (and I=0 otherwise).

Indicator random variables and linearity of expectation work great together!

EXAMPLE

Roll a die n times.

What is the expected number rolls that show a value that is at least the value of the previous roll?

$$\Pr(I_j=1)=rac{21}{36}=rac{7}{12}$$
 (by counting the outcomes)

$$E\left(\sum_{j=2}^{n} I_{j}\right) = \sum_{j=2}^{n} \mathbb{E}(I_{j}) = \sum_{j=2}^{n} \Pr(I_{j} = 1) = (n-1) \cdot \frac{7}{12}$$

An **indicator random variable** is a r.v. that can only be 0 or 1.

(usually referred to by the letter I)

Fact:
$$\mathbb{E}(I) = \Pr(I = 1)$$
.

Often an indicator r.v. I is associated with an event such that

$$I=1$$
 if the event happens (and $I=0$ otherwise).

Indicator random variables and linearity of expectation work great together!

Linearity of Expectation

Let Y_1, Y_2, \ldots, Y_k be k random variables. Then

$$\mathbb{E}\Big(\sum_{i=1}^k Y_i\Big) = \sum_{i=1}^k \mathbb{E}(Y_i)$$

rolls that show a value ast the value of the previous roll?

of the jth roll previous roll (and $I_j=0$ otherwise)

$$\Pr(I_j=1)=rac{21}{36}=rac{7}{12}$$
. (by counting the outcomes)
$$E\Big(\sum_{j=2}^n I_j\Big)=\sum_{j=2}^n \mathbb{E}(I_j)=\sum_{j=2}^n \Pr(I_j=1)=(n-1)\cdot rac{7}{12}$$

An **indicator random variable** is a r.v. that can only be 0 or 1.

(usually referred to by the letter I)

Fact:
$$\mathbb{E}(I) = \Pr(I = 1)$$
.

Often an indicator r.v. I is associated with an event such that

I=1 if the event happens (and I=0 otherwise).

Indicator random variables and linearity of expectation work great together!

EXAMPLE

Roll a die n times.

What is the expected number rolls that show a value that is at least the value of the previous roll?

$$\Pr(I_j=1)=rac{21}{36}=rac{7}{12}$$
 (by counting the outcomes)

$$E\left(\sum_{j=2}^{n} I_{j}\right) = \sum_{j=2}^{n} \mathbb{E}(I_{j}) = \sum_{j=2}^{n} \Pr(I_{j} = 1) = (n-1) \cdot \frac{7}{12}$$

An **indicator random variable** is a r.v. that can only be 0 or 1.

(usually referred to by the letter I)

Fact:
$$\mathbb{E}(I) = \Pr(I = 1)$$
.

Often an indicator r.v. I is associated with an event such that I=1 if the event happens (and I=0 otherwise).

Indicator random variables and linearity of expectation work great together!

EXAMPLE

Roll a die n times.

What is the expected number rolls that show a value that is at least the value of the previous roll?

$$\Pr(I_j=1)=rac{21}{36}=rac{7}{12}$$
 (by counting the outcomes)

$$E\left(\sum_{j=2}^{n} I_{j}\right) = \sum_{j=2}^{n} \mathbb{E}(I_{j}) = \sum_{j=2}^{n} \Pr(I_{j} = 1) = (n-1) \cdot \frac{7}{12}$$

An **indicator random variable** is a r.v. that can only be 0 or 1.

(usually referred to by the letter I)

Fact:
$$\mathbb{E}(I) = \Pr(I = 1)$$
.

Often an indicator r.v. I is associated with an event such that

I=1 if the event happens (and I=0 otherwise).

Indicator random variables and linearity of expectation work great together!

EXAMPLE

Roll a die n times.

What is the expected number rolls that show a value that is at least the value of the previous roll?

$$\Pr(I_j=1)=rac{21}{36}=rac{7}{12}$$
 (by counting the outcomes)

$$E\left(\sum_{j=2}^{n} I_{j}\right) = \sum_{j=2}^{n} \mathbb{E}(I_{j}) = \sum_{j=2}^{n} \Pr(I_{j} = 1) = (n-1) \cdot \frac{7}{12}$$

Markov's inequality

Suppose that the average (mean) speed on the motorway is 60 mph.

EXAMPLE

Suppose that the average (mean) speed on the motorway is 60 mph. It then follows that at most

EXAMPLE

Suppose that the average (mean) speed on the motorway is 60 mph. It then follows that at most

 $\frac{1}{2}$ of all cars drive at least $120\ \text{mph},$

EXAMPLE

Suppose that the average (mean) speed on the motorway is 60 mph. It then follows that at most

 $\frac{1}{2}$ of all cars drive at least $120\ \text{mph},$

... otherwise the mean must be higher than 60 mph. (a contradiction)

EXAMPLE

Suppose that the average (mean) speed on the motorway is 60 mph. It then follows that at most

 $\frac{2}{3}$ of all cars drive at least 90 mph,

... otherwise the mean must be higher than 60 mph. (a contradiction)

EXAMPLE

Suppose that the average (mean) speed on the motorway is 60 mph. It then follows that at most

 $\frac{2}{3}$ of all cars drive at least 90 mph,

... otherwise the mean must be higher than 60 mph. (a contradiction)

THEOREM (Markov's inequality) -

If X is a non-negative r.v., then for all a > 0,

$$\Pr(X \ge a) \le \frac{\mathbb{E}(X)}{a}$$
.

EXAMPLE

Suppose that the average (mean) speed on the motorway is 60 mph. It then follows that at most

 $\frac{2}{3}$ of all cars drive at least 90 mph,

... otherwise the mean must be higher than 60 mph. (a contradiction)

THEOREM (Markov's inequality) -

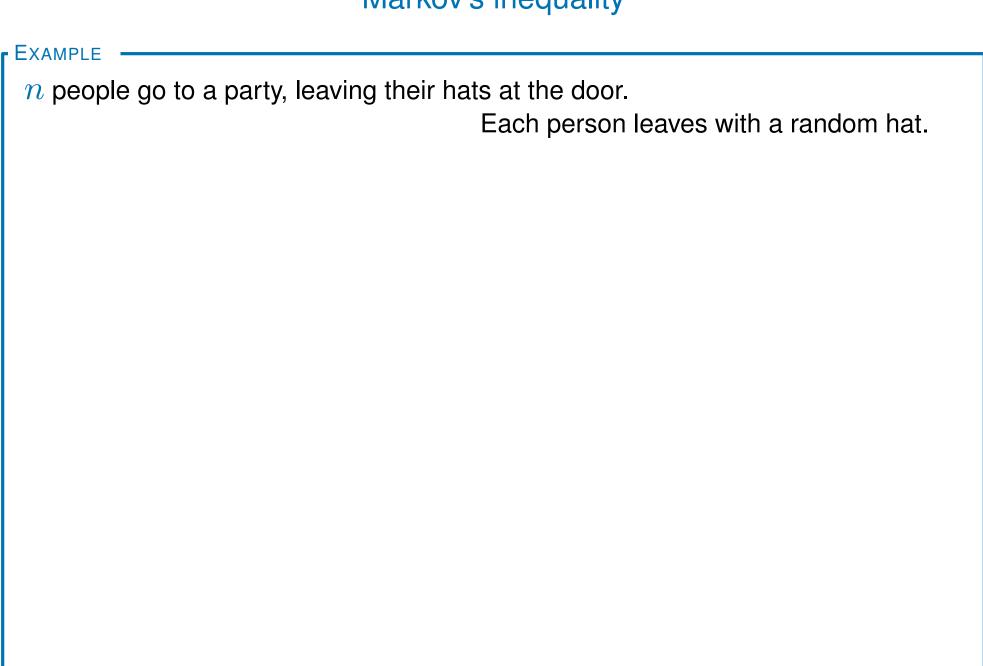
If X is a non-negative r.v., then for all a > 0,

$$\Pr(X \ge a) \le \frac{\mathbb{E}(X)}{a}$$
.

EXAMPLE

From the example above:

- ▶ $\Pr(\text{speed of a random car} \ge 120 \text{ mph}) \le \frac{60}{120} = \frac{1}{2},$
- $ightharpoonup \Pr(\text{speed of a random car} \geq 90 \text{mph}) \leq \frac{60}{90} = \frac{2}{3}.$



EXAMPLE

n people go to a party, leaving their hats at the door.

Each person leaves with a random hat.

How many people leave with their own hat?

EXAMPLE

n people go to a party, leaving their hats at the door.

Each person leaves with a random hat.

How many people leave with their own hat?

For $j\in\{1,\dots,n\}$, let indicator r.v. $I_j=1$ if the jth person gets their own hat, otherwise $I_j=0$.

EXAMPLE

n people go to a party, leaving their hats at the door.

Each person leaves with a random hat.

How many people leave with their own hat?

For $j\in\{1,\ldots,n\}$, let indicator r.v. $I_j=1$ if the jth person gets their own hat, otherwise $I_j=0$.

By linearity of expectation...

$$\mathbb{E}\left(\sum_{j=1}^{n} I_{j}\right) = \sum_{j=1}^{n} \mathbb{E}(I_{j}) = \sum_{j=1}^{n} \Pr(I_{j} = 1) = n \cdot \frac{1}{n} = 1.$$

EXAMPLE

n people go to a party, leaving their hats at the door.

Each person leaves with a random hat.

How many people leave with their own hat?

For $j \in \{1, \ldots, n\}$, let indicator r.v. $I_j = 1$ if the jth person gets their own hat,

otherwise $I_i = 0$.

By linearity of expectation...

Fact:
$$\mathbb{E}(I) = \Pr(I = 1)$$
.

$$\mathbb{E}\left(\sum_{j=1}^{n} I_{j}\right) = \sum_{j=1}^{n} \mathbb{E}(I_{j}) = \sum_{j=1}^{n} \Pr(I_{j} = 1) = n \cdot \frac{1}{n} = 1.$$

EXAMPLE

n people go to a party, leaving their hats at the door.

Each person leaves with a random hat.

How many people leave with their own hat?

For $j\in\{1,\ldots,n\}$, let indicator r.v. $I_j=1$ if the jth person gets their own hat, otherwise $I_j=0$.

By linearity of expectation...

$$\mathbb{E}\left(\sum_{j=1}^{n} I_{j}\right) = \sum_{j=1}^{n} \mathbb{E}(I_{j}) = \sum_{j=1}^{n} \Pr(I_{j} = 1) = n \cdot \frac{1}{n} = 1.$$

EXAMPLE

n people go to a party, leaving their hats at the door.

Each person leaves with a random hat.

How many people leave with their own hat?

For $j\in\{1,\ldots,n\}$, let indicator r.v. $I_j=1$ if the jth person gets their own hat, otherwise $I_j=0$.

By linearity of expectation...

$$\mathbb{E}\left(\sum_{j=1}^{n} I_{j}\right) = \sum_{j=1}^{n} \mathbb{E}(I_{j}) = \sum_{j=1}^{n} \Pr(I_{j} = 1) = n \cdot \frac{1}{n} = 1.$$

By Markov's inequality (recall: $\Pr(X \geq a) \leq \frac{\mathbb{E}(X)}{a}$),

EXAMPLE

n people go to a party, leaving their hats at the door.

Each person leaves with a random hat.

How many people leave with their own hat?

For $j\in\{1,\ldots,n\}$, let indicator r.v. $I_j=1$ if the jth person gets their own hat, otherwise $I_j=0$.

By linearity of expectation...

$$\mathbb{E}\left(\sum_{j=1}^{n} I_{j}\right) = \sum_{j=1}^{n} \mathbb{E}(I_{j}) = \sum_{j=1}^{n} \Pr(I_{j} = 1) = n \cdot \frac{1}{n} = 1.$$

By Markov's inequality (recall: $\Pr(X \geq a) \leq \frac{\mathbb{E}(X)}{a}$),

 $\Pr(exttt{5 or more people leaving with their own hats}) \leq rac{1}{5},$

EXAMPLE

n people go to a party, leaving their hats at the door.

Each person leaves with a random hat.

How many people leave with their own hat?

For $j\in\{1,\ldots,n\}$, let indicator r.v. $I_j=1$ if the jth person gets their own hat, otherwise $I_j=0$.

By linearity of expectation...

$$\mathbb{E}\left(\sum_{j=1}^{n} I_{j}\right) = \sum_{j=1}^{n} \mathbb{E}(I_{j}) = \sum_{j=1}^{n} \Pr(I_{j} = 1) = n \cdot \frac{1}{n} = 1.$$

By Markov's inequality (recall: $\Pr(X \geq a) \leq \frac{\mathbb{E}(X)}{a}$),

 $\Pr(exttt{5 or more people leaving with their own hats}) \leq rac{1}{5},$

 $\Pr(\text{at least 1 person leaving with their own hat}) \leq \frac{1}{1} = 1.$

EXAMPLE

n people go to a party, leaving their hats at the door.

Each person leaves with a random hat.

How many people leave with their own hat?

For $j\in\{1,\ldots,n\}$, let indicator r.v. $I_j=1$ if the jth person gets their own hat, otherwise $I_j=0$.

By linearity of expectation...

$$\mathbb{E}\left(\sum_{j=1}^{n} I_{j}\right) = \sum_{j=1}^{n} \mathbb{E}(I_{j}) = \sum_{j=1}^{n} \Pr(I_{j} = 1) = n \cdot \frac{1}{n} = 1.$$

By Markov's inequality (recall: $\Pr(X \geq a) \leq \frac{\mathbb{E}(X)}{a}$),

 $\Pr(exttt{5 or more people leaving with their own hats}) \leq rac{1}{5},$

 $\Pr(\text{at least 1 person leaving with their own hat}) \leq \frac{1}{1} = 1.$

(sometimes Markov's inequality is not particularly informative)

EXAMPLE

n people go to a party, leaving their hats at the door.

Each person leaves with a random hat.

How many people leave with their own hat?

For $j\in\{1,\ldots,n\}$, let indicator r.v. $I_j=1$ if the jth person gets their own hat, otherwise $I_j=0$.

By linearity of expectation...

$$\mathbb{E}\left(\sum_{j=1}^{n} I_{j}\right) = \sum_{j=1}^{n} \mathbb{E}(I_{j}) = \sum_{j=1}^{n} \Pr(I_{j} = 1) = n \cdot \frac{1}{n} = 1.$$

By Markov's inequality (recall: $\Pr(X \geq a) \leq \frac{\mathbb{E}(X)}{a}$),

 $\Pr(exttt{5 or more people leaving with their own hats}) \leq rac{1}{5},$

 $\Pr(\text{at least 1 person leaving with their own hat}) \leq \frac{1}{1} = 1.$

(sometimes Markov's inequality is not particularly informative)

In fact, here it can be shown that as $n\to\infty$, the probability that at least one person leaves with their own hat is $1-\frac{1}{e}\approx 0.632$.

COROLLARY

If X is a non-negative r.v. that only takes integer values, then

$$\Pr(X > 0) = \Pr(X \ge 1) \le \mathbb{E}(X)$$
.

For an indicator r.v. I, the bound is tight (=), as $\Pr(I>0)=\mathbb{E}(I)$.

THEOREM (union bound) -

Let V_1,\ldots,V_k be k events. Then

$$\Pr\left(\bigcup_{i=1}^{k} V_i\right) \leq \sum_{i=1}^{k} \Pr(V_i).$$

THEOREM (union bound) -

Let V_1, \dots, V_k be k events. Then

$$\Pr\left(\bigcup_{i=1}^{k} V_i\right) \leq \sum_{i=1}^{k} \Pr(V_i).$$

This is the probability at least one of the events happens

THEOREM (union bound) -

Let V_1,\ldots,V_k be k events. Then

$$\Pr\left(\bigcup_{i=1}^{k} V_i\right) \leq \sum_{i=1}^{k} \Pr(V_i).$$

THEOREM (union bound) -

Let V_1, \dots, V_k be k events. Then

$$\Pr\left(\bigcup_{i=1}^{k} V_i\right) \leq \sum_{i=1}^{k} \Pr(V_i).$$

This bound is tight (=) when the events are all disjoint.

 $(V_i ext{ and } V_j ext{ are disjoint iff } V_i \cap V_j ext{ is empty})$

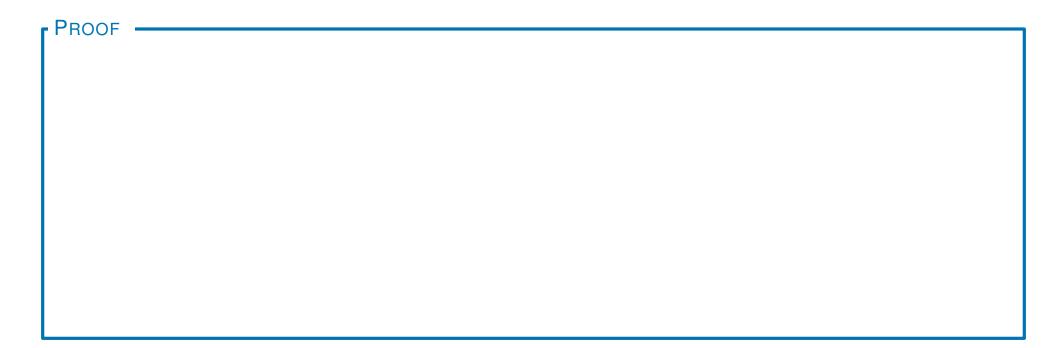
THEOREM (union bound) -

Let V_1, \ldots, V_k be k events. Then

$$\Pr\left(\bigcup_{i=1}^{k} V_i\right) \leq \sum_{i=1}^{k} \Pr(V_i).$$

This bound is tight (=) when the events are all disjoint.

 $(V_i \text{ and } V_j \text{ are disjoint iff } V_i \cap V_j \text{ is empty})$



THEOREM (union bound)

Let V_1, \ldots, V_k be k events. Then

$$\Pr\left(\bigcup_{i=1}^{k} V_i\right) \leq \sum_{i=1}^{k} \Pr(V_i).$$

This bound is tight (=) when the events are all disjoint.

 $(V_i \text{ and } V_j \text{ are disjoint iff } V_i \cap V_j \text{ is empty})$

PROOF

Define indicator r.v. I_j to be 1 if event V_j happens, otherwise $I_j=0$.

THEOREM (union bound)

Let V_1, \ldots, V_k be k events. Then

$$\Pr\left(\bigcup_{i=1}^{k} V_i\right) \leq \sum_{i=1}^{k} \Pr(V_i).$$

This bound is tight (=) when the events are all disjoint.

 $(V_i \text{ and } V_j \text{ are disjoint iff } V_i \cap V_j \text{ is empty})$

PROOF

Define indicator r.v. I_j to be 1 if event V_j happens, otherwise $I_j=0$.

THEOREM (union bound)

Let V_1, \ldots, V_k be k events. Then

$$\Pr\left(\bigcup_{i=1}^{k} V_i\right) \leq \sum_{i=1}^{k} \Pr(V_i).$$

This bound is tight (=) when the events are all disjoint.

 $(V_i \text{ and } V_j \text{ are disjoint iff } V_i \cap V_j \text{ is empty})$

PROOF

Define indicator r.v. I_j to be 1 if event V_j happens, otherwise $I_j=0$.

$$\Pr\left(\bigcup_{j=1}^{k} V_{j}\right) = \Pr(X > 0) \leq \mathbb{E}(X) = \mathbb{E}\left(\sum_{j=1}^{k} I_{j}\right) = \sum_{j=1}^{k} \mathbb{E}(I_{j})$$
$$= \sum_{j=1}^{k} \Pr(V_{j})$$

THEOREM (union bound)

Let V_1, \ldots, V_k be k events. Then

$$\Pr\left(\bigcup_{i=1}^{k} V_i\right) \leq \sum_{i=1}^{k} \Pr(V_i).$$

This bound is tight (=) when the events are all disjoint.

 $(V_i \text{ and } V_j \text{ are disjoint iff } V_i \cap V_j \text{ is empty})$

PROOF

Define indicator r.v. I_j to be 1 if event V_j happens, otherwise $I_j=0$.

$$\Pr\left(\bigcup_{j=1}^{k} V_{j}\right) = \Pr(X > 0) \leq \mathbb{E}(X) = \mathbb{E}\left(\sum_{j=1}^{k} I_{j}\right) = \sum_{j=1}^{k} \mathbb{E}(I_{j})$$
by previous
$$= \sum_{j=1}^{k} \Pr(V_{j})$$
Markov corollary

THEOREM (union bound)

Let V_1, \ldots, V_k be k events. Then

$$\Pr\left(\bigcup_{i=1}^{k} V_i\right) \leq \sum_{i=1}^{k} \Pr(V_i).$$

This bound is tight (=) when the events are all disjoint.

 $(V_i \text{ and } V_j \text{ are disjoint iff } V_i \cap V_j \text{ is empty})$

PROOF

Define indicator r.v. I_j to be 1 if event V_j happens, otherwise $I_j=0$.

$$\Pr\left(\bigcup_{j=1}^{k} V_{j}\right) = \Pr(X > 0) \leq \mathbb{E}(X) = \mathbb{E}(\sum_{j=1}^{k} I_{j}) = \sum_{j=1}^{k} \mathbb{E}(I_{j})$$
by previous
Markov corollary

$$= \sum_{j=1}^{k} \Pr(V_{j})$$
Linearity of expectation

THEOREM (union bound)

Let V_1, \ldots, V_k be k events. Then

$$\Pr\left(\bigcup_{i=1}^{k} V_i\right) \leq \sum_{i=1}^{k} \Pr(V_i).$$

This bound is tight (=) when the events are all disjoint.

 $(V_i \text{ and } V_j \text{ are disjoint iff } V_i \cap V_j \text{ is empty})$

PROOF

Define indicator r.v. I_j to be 1 if event V_j happens, otherwise $I_j=0$.

Let the r.v. $X=\sum_{j=1}^k I_j$ be the number of events that happen. $\mathbb{E}_I^{(I)}=\Pr(I=1)$

$$\Pr\left(\bigcup_{j=1}^{k} V_{j}\right) = \Pr(X > 0) \leq \mathbb{E}(X) = \mathbb{E}\left(\sum_{j=1}^{k} I_{j}\right) = \sum_{j=1}^{k} \mathbb{E}(I_{j})$$
by previous
$$= \sum_{j=1}^{k} \Pr(V_{j})$$
Markov corollary

Linearity of expectation

THEOREM (union bound) -

Let V_1, \dots, V_k be k events. Then

$$\Pr\left(\bigcup_{i=1}^{k} V_i\right) \leq \sum_{i=1}^{k} \Pr(V_i).$$

This bound is tight (=) when the events are all disjoint.

 $(V_i ext{ and } V_j ext{ are disjoint iff } V_i \cap V_j ext{ is empty})$

THEOREM (union bound)

Let V_1, \ldots, V_k be k events. Then

$$\Pr\left(\bigcup_{i=1}^{k} V_i\right) \leq \sum_{i=1}^{k} \Pr(V_i).$$

This bound is tight (=) when the events are all disjoint.

 $(V_i \text{ and } V_j \text{ are disjoint iff } V_i \cap V_j \text{ is empty})$

EXAMPLE

 $S=\{1,\ldots,6\}$ is the set of outcomes of a die roll.

THEOREM (union bound)

Let V_1, \ldots, V_k be k events. Then

$$\Pr\left(\bigcup_{i=1}^{k} V_i\right) \leq \sum_{i=1}^{k} \Pr(V_i).$$

This bound is tight (=) when the events are all disjoint.

 $(V_i \text{ and } V_j \text{ are disjoint iff } V_i \cap V_j \text{ is empty})$

EXAMPLE

 $S=\{1,\ldots,6\}$ is the set of outcomes of a die roll.

We define two events:
$$V_1 = \{3,4\}$$

$$V_2 = \{1,2,3\}$$

THEOREM (union bound)

Let V_1, \ldots, V_k be k events. Then

$$\Pr\left(\bigcup_{i=1}^k V_i\right) \le \sum_{i=1}^k \Pr(V_i).$$

This bound is tight (=) when the events are all disjoint.

 $(V_i \text{ and } V_j \text{ are disjoint iff } V_i \cap V_j \text{ is empty})$

EXAMPLE

$$S=\{1,\ldots,6\}$$
 is the set of outcomes of a die roll.

We define two events:
$$V_1=\{3,4\}$$

$$V_2=\{1,2,3\}$$

$$\Pr(V_1 \cup V_2) \le \Pr(V_1) + \Pr(V_2) = \frac{1}{3} + \frac{1}{2} = \frac{5}{6}$$

THEOREM (union bound)

Let V_1, \ldots, V_k be k events. Then

$$\Pr\left(\bigcup_{i=1}^k V_i\right) \le \sum_{i=1}^k \Pr(V_i).$$

This bound is tight (=) when the events are all disjoint.

 $(V_i \text{ and } V_j \text{ are disjoint iff } V_i \cap V_j \text{ is empty})$

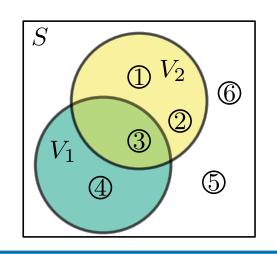
EXAMPLE

$$S = \{1, \dots, 6\}$$
 is the set of outcomes of a die roll.

We define two events:
$$V_1=\{3,4\}$$

$$V_2=\{1,2,3\}$$

$$\Pr(V_1 \cup V_2) \le \Pr(V_1) + \Pr(V_2) = \frac{1}{3} + \frac{1}{2} = \frac{5}{6}$$



THEOREM (union bound)

Let V_1, \ldots, V_k be k events. Then

$$\Pr\left(\bigcup_{i=1}^{k} V_i\right) \leq \sum_{i=1}^{k} \Pr(V_i).$$

This bound is tight (=) when the events are all disjoint.

 $(V_i \text{ and } V_j \text{ are disjoint iff } V_i \cap V_j \text{ is empty})$

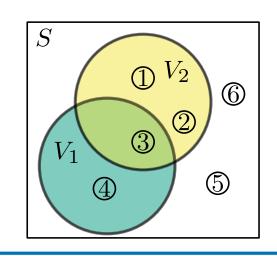
EXAMPLE

$$S=\{1,\ldots,6\}$$
 is the set of outcomes of a die roll.

We define two events:
$$V_1 = \{3,4\}$$

$$V_2 = \{1,2,3\}$$

$$\Pr(V_1 \cup V_2) \le \Pr(V_1) + \Pr(V_2) = \frac{1}{3} + \frac{1}{2} = \frac{5}{6}$$
 in fact, $\Pr(V_1 \cup V_2) = \frac{2}{3}$



THEOREM (union bound)

Let V_1, \ldots, V_k be k events. Then

$$\Pr\left(\bigcup_{i=1}^{k} V_i\right) \leq \sum_{i=1}^{k} \Pr(V_i).$$

This bound is tight (=) when the events are all disjoint.

 $(V_i \text{ and } V_j \text{ are disjoint iff } V_i \cap V_j \text{ is empty})$

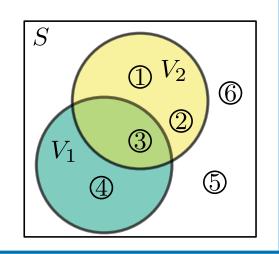
EXAMPLE

 $S = \{1, \dots, 6\}$ is the set of outcomes of a die roll.

We define two events:
$$V_1 = \{3,4\}$$

$$V_2 = \{1,2,3\}$$

$$\Pr(V_1\cup V_2)\leq \Pr(V_1)+\Pr(V_2)=\tfrac{1}{3}+\tfrac{1}{2}=\tfrac{5}{6}$$
 in fact,
$$\Pr(V_1\cup V_2)=\tfrac{2}{3}\quad \text{(3 was 'double counted')}$$



THEOREM (union bound)

Let V_1, \ldots, V_k be k events. Then

$$\Pr\left(\bigcup_{i=1}^{k} V_i\right) \leq \sum_{i=1}^{k} \Pr(V_i).$$

This bound is tight (=) when the events are all disjoint.

 $(V_i \text{ and } V_j \text{ are disjoint iff } V_i \cap V_j \text{ is empty})$

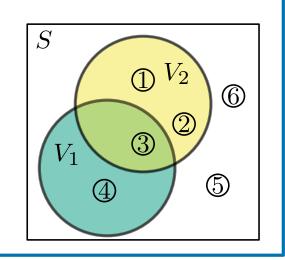
EXAMPLE

 $S=\{1,\ldots,6\}$ is the set of outcomes of a die roll.

We define two events:
$$V_1 = \{3,4\}$$

$$V_2 = \{1,2,3\}$$

$$\Pr(V_1\cup V_2)\leq \Pr(V_1)+\Pr(V_2)=\frac{1}{3}+\frac{1}{2}=\frac{5}{6}$$
 in fact,
$$\Pr(V_1\cup V_2)=\frac{2}{3}\quad \text{(3 was 'double counted')}$$



Summary

The **sample space** S is the set of *outcomes* of an experiment.

For $x \in S$, the **probability** of x, written $\Pr(x)$, is a real number between 0 and 1,

such that
$$\sum_{x \in S} \Pr(x) = 1$$
.

An **event** is a subset V of the sample space S, $\Pr(V) = \sum_{x \in V} \Pr(x)$

A **random variable** (r.v.) Y is a function which maps $x \in S$ to $S(x) \in \mathbb{R}$ The probability of Y taking value y is \mathbb{P}

The **expected value** (the mean) of Y is ${\mathbb F}$

 $\{x\in S \text{ st. } Y(x)=y\}$

An **indicator random variable** is a r.v. that can only be 0 or 1.

Fact: $\mathbb{E}(I) = \Pr(I = 1)$.

THEOREM (Linearity of expectation) =

Let Y_1, Y_2, \ldots, Y_k be k random variables then,

$$\mathbb{E}\Big(\sum_{i=1}^{k} Y_i\Big) = \sum_{i=1}^{k} \mathbb{E}(Y_i)$$

THEOREM (union bound) -

Let V_1,\ldots,V_k be k events then,

$$\Pr\left(\bigcup_{i=1}^{k} V_i\right) \leq \sum_{i=1}^{k} \Pr(V_i)$$

- Tнеовем (Markov's inequality) -

If X is a non-negative r.v., then for all a>0,

$$\Pr(X \ge a) \le \frac{\mathbb{E}(X)}{a}$$