Advanced Algorithms - COMS31900

Approximation algorithms part one

Constant factor approximations

Raphaël Clifford

Slides by Benjamin Sach

NP-completeness recap

NP is the class of decision problems we can
check the answer to in polynomial time
A problem A is NP-complete if
A is in NP
Every B in NP has a polynomial time reduction to A
(this second part is the definition of NP-hard)

If we could solve A quickly we could solve every problem in NP quickly They are the 'hardest' problems in NP

So if a problem is NP -complete, we give up right?

Bin packing

$|\operatorname{Bin}|=1$ and there is an unlimited number of bins...

Bin packing

Problem pack all items into the fewest possible bins

This is an example of an optimisation problem

Bin packing

Problem pack all items into the fewest possible bins

This is an example of an optimisation problem

Bin packing

Problem pack all items into the fewest possible bins

and the decision version. . . "Can you pack the items into at most k bins?"

Next fit

If item i fits into bin j : pack it, $i++$; else $j++$;

Next fit
\downarrow

If item i fits into bin j : pack it, $\mathrm{i}++$; else $\mathrm{j}++$;

Next fit

Next fit runs in $O(n)$ time but how good is it?

Next fit

Next fit runs in $O(n)$ time but how good is it?

Let fill(i) be the sum of item sizes in bin i
and s be the number of non-empty bins (using Next fit)
the sum of the
Observe that fill $(2 i-1)+$ fill $(2 i)>1$ (for $1 \leqslant 2 i \leqslant s$) item weights

$$
\text { so }\lfloor s / 2\rfloor<\sum_{1 \leqslant 2 i \leqslant s} \text { fill }(2 i-1)+\text { fill }(2 j)
$$

Next fit

Next fit runs in $O(n)$ time but how good is it?

Let fill(i) be the sum of item sizes in bin i

$$
\text { and } s \text { be the number of non-empty bins (using Next fit) }
$$

the sum of the
Observe that fill $(2 i-1)+$ fill $(2 i)>1$ (for $1 \leqslant 2 i \leqslant s)$ item weights

$$
\text { so }\lfloor s / 2\rfloor<\sum_{1 \leqslant 2 i \leqslant s} \text { fill }(2 i-1)+\text { fill }(2 i) I \leqslant \mathrm{Opt}
$$

Next fit

Next fit runs in $O(n)$ time but how good is it?

Let fill(i) be the sum of item sizes in bin i
and s be the number of non-empty bins (using Next fit)
Observe that fill $(2 i-1)+$ fill $(2 i)>1$ (for $1 \leqslant 2 i \leqslant s$)

$$
\text { so }\lfloor s / 2\rfloor<\sum_{1 \leqslant 2 i \leqslant s} \text { fill }(2 i-1)+\text { fill }(2 i) I \leqslant \mathrm{Opt}
$$

therefore $s \leqslant 2$. Opt in other words the Next Fit is never worse than twice the optimal

Approximation Algorithms

An algorithm A is an α-approximation algorithm for problem P if,

- A runs in polynomial time
- A always outputs a solution with value s within an α factor of Opt

Here P is an optimisation problem with optimal solution of value Opt

- If P is a maximisation problem, $\frac{\mathrm{Opt}}{\alpha} \leqslant s \leqslant \mathrm{Opt}$
- If P is a minimisation problem (like BinPacking), Opt $\leqslant s \leqslant \alpha \cdot$ Opt

We have seen a 2-approximation algorithm for BINPACKING
the number of bins used, s is always between Opt and $2 \cdot \mathrm{Opt}$

In the examples we consider, α will be a constant but it could depend on n (the input size)

We have seen that Next fit is a 2-approximation algorithm for Bin packing which runs in $O(n)$ time

First fit decreasing (FFD)

Step 1: Sort the items into non-increasing order

First fit decreasing (FFD)

Step 1: Sort the items into non-increasing order

First fit decreasing (FFD)

Step 2: Put each item in the first (left-most) bin it fits in

First fit decreasing (FFD)

Step 2: Put each item in the first (left-most) bin it fits in

First fit decreasing (FFD)

FFD runs in $O\left(n^{2}\right)$ time but how good is it?

First fit decreasing (FFD)

Consider bin $j=\left\lceil\frac{2 s}{3}\right\rceil$ (s is the number of bins FFD uses on this input)
Case 1: $\operatorname{Bin} j$ contains an item of size $>1 / 2$
Every bin $j^{\prime} \leqslant j$ contains an item of size $>1 / 2$
because we packed big things first and each thing was packed in the lowest numbered bin

First fit decreasing (FFD)

Consider bin $j=\left\lceil\frac{2 s}{3}\right\rceil$ (s is the number of bins FFD uses on this input)
Case 1: $\operatorname{Bin} j$ contains an item of size $>1 / 2$
Every bin $j^{\prime} \leqslant j$ contains an item of size $>1 / 2$ each of these items has to be in a different bin (even in Opt)

So Opt uses at least $\frac{2 s}{3}$ bins

$$
\text { or. } . s \leqslant \frac{3 \mathrm{Opt}}{2}
$$

First fit decreasing (FFD)

Consider bin $j=\left\lceil\frac{2 s}{3}\right\rceil$ (s is the number of bins FFD uses on this input)
Case 2 : $\operatorname{Bin} j$ contains only items of size $\leqslant 1 / 2$
when FFD packed the first item into bin j,

First fit decreasing (FFD)

Consider bin $j=\left\lceil\frac{2 s}{3}\right\rceil$ (s is the number of bins FFD uses on this input)
Case 2 : $\operatorname{Bin} j$ contains only items of size $\leqslant 1 / 2$
so Bins $j,(j+1), \ldots,(s-2),(s-1)$ each contain at least two items and bin s contains at least one item

This gives a total of $2(s-j)+1$ items, none of which fits into bins $1,2,3, \ldots,(j-1)$
so $I>\min \{j-1,2(s-j)+1\} \geqslant\lceil 2 s / 3\rceil-1$

$$
\text { by plugging in } j=\lceil 2 s / 3\rceil
$$

First fit decreasing (FFD)

Consider bin $j=\left\lceil\frac{2 s}{3}\right\rceil$ (s is the number of bins FFD uses on this input)
Case 2 : $\operatorname{Bin} j$ contains only items of size $\leqslant 1 / 2$

$$
\begin{aligned}
& \text { As }\lceil 2 s / 3\rceil-1<I \text { and } I \leqslant \mathrm{Opt} \\
& \quad \text { we have that }\lceil 2 s / 3\rceil-1<\mathrm{Opt}
\end{aligned}
$$

...but both sides are integers...

$$
\begin{aligned}
& \text { so }\lceil 2 s / 3\rceil \leqslant \text { Opt } \\
& \text { finally } \ldots 2 s / 3 \leqslant\lceil 2 s / 3\rceil \leqslant \mathrm{Opt} \\
& \qquad \text { or } s \leqslant(3 / 2) \mathrm{Opt}
\end{aligned}
$$

First fit decreasing (FFD)

Approximation Algorithms Summary

An algorithm A is an α-approximation algorithm for problem P if,

- A runs in polynomial time
- A always outputs a solution with value s within an α factor of Opt

Here P is an optimisation problem with optimal solution of value Opt

If P is a maximisation problem, $\frac{\mathrm{Opt}}{\alpha} \leqslant s \leqslant \mathrm{Opt}$
If P is a minimisation problem (like BinPacking), Opt $\leqslant s \leqslant \alpha \cdot$ Opt

We have seen Next Fit which is a 2 -approximation algorithm for BINPACKING which runs in $O(n)$ time
and First Fit Decreasing which is a $3 / 2$-approximation algorithm for BInPACKING which runs in $O\left(n^{2}\right)$ time

