Advanced Algorithms — COMS31900

Approximation algorithms part one

Constant factor approximations

Raphaéel Clifford

Slides by Benjamin Sach

B SRt

NP-completeness recap

NP is the class of decision problems we can
check the answer to in polynomial time

A problem A is NP-complete if

Aisin NP
Every BB in NP has a polynomial time reduction to A
(this second part is the definition of NP -hard)

If we could solve A quickly we could solve every problem in NP quickly

They are the ‘hardest’ problems in NP

So if a problem is NP-comp/ete, we give up right?

B oL
Bin packing

[Bin| = 1 and there is an unlimited number of bins. . .

JUUUU

[is the sum of all item sizes

Bin packing

Problem pack all items into the fewest possible bins

B s

Bin packing

Problem pack all items into the fewest possible bins

B s

The BINPACKING problem is known to be N P-hard

Bin packing

B s

Problem pack all items into the fewest possible bins

and the decision version. ..

In the decision version,
k is part of the input

“Can you pack the items into at most k bins?”

is NP-complete

B s

Next fit

UL

If item 1 fits into bin J: pack it, 1++; else J++;

|
-l

Next fit

B s

BES D
Next fit

o I

Next fit runs in O (n) time but how good is it?

where v is the number of items J < '

B s

Next fit

o I

Next fit runs in O (n) time but how good is it?

Let fill(i) be the sum of item sizes in bin 7

and s be the number of non-empty bins (using Next fit)
the sum of the

Observe that fill(27 — 1) + fill(2¢) > 1 (for 1 < 27 < s) / item weights
so [s/2] < Y fil(2i — 1) +ill(2%) ;

1<21<s

B s

Next fit

o I

Next fit runs in O (n) time but how good is it?

Let fill(i) be the sum of item sizes in bin 7

and s be the number of non-empty bins (using Next fit)
the sum of the

Observe that fill(27 — 1) + fill(2¢) > 1 (for 1 < 27 < s) / item weights

so [s/2) <) (20— 1) +(2) o

the optimal number of bins -

Next fit

o I

Next fit runs in O (n) time but how good is it?

Let fill(i) be the sum of item sizes in bin 7
and s be the number of non-empty bins (using Next fit)

Observe that fill(22 — 1) 4 fill(27) > 1 (for 1 < 27 < s)

so [s/2) <) fil(2i— 1) +(2) p o

1<21<s

therefore s < 2 - Opt in other words the Next Fit is never worse than twice the optimal

University
BR.ISTDL

B Bt
Approximation Algorithms

An algorithm A is an c-approximation algorithm for problem P fif,

o A runs in polynomial time

o A always outputs a solution with value s
within an « factor of Opt

Here P is an optimisation problem with optimal solution of value Opt
. L Opt
- If P is a maximisation problem, == < s < Opt

« If P is a minimisation problem (like BINPACKING), Opt < s < o - Opt

We have seen a 2-approximation algorithm for BINPACKING
the number of bins used, s is always between Opt and 2 - Opt

In the examples we consider, oz will be a constant but it could depend on 7 (the input size)

B s

o

We have seen that Next fit is a 2-approximation algorithm for Bin packing
which runs in O(n,) time

can we do better?

B s

First fit decreasing (FFD)

UL

Step 1: Sort the items into non-increasing order

-l

B s

First fit decreasing (FFD)

Luuyy-

3/8

Step 1: Sort the items into non-increasing order

B s

First fit decreasing (FFD)

Loy~

3/8

Step 2: Put each item in the first (left-most) bin it fits in

First fit decreasing (FFD)

B s

Step 2: Put each item in the first (left-most) bin it fits in

.

this will be important

for the proof

B s

First fit decreasing (FFD)

FFD runs in O(n?) time but how good is it?

First fit decreasing (FFD)

J

gl DL

Consider bin j = [%-‘ (s is the number of bins FFD uses on this input)

Case 1: Bin j contains an item of size > 1/2

Every bin 5/ < j contains an item of size > 1/2

.

because we packed big things first and each thing was

packed in the lowest numbered bin

B SRt

First fit decreasing (FFD)

J

WL

Consider bin j = [%-‘ (s is the number of bins FFD uses on this input)

Case 1: Bin j contains an item of size > 1/2

Every bin j/ < j contains an item of size > 1/2

each of these items has to be in a different bin (even in Opt)

So Opt uses at least 22 bins
P : 30pt
or...s < ?

First fit decreasing (FFD)

J

g DL

Consider bin j = {%-‘ (s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size < 1/2

when FFD packed the first item into bin 7,

University of
BRISTOL

First fit decreasing (FFD)

J

Wl DB

Consider bin j = [%-‘ (s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size < 1/2

soBinsj,(j +1),...,(s—2),(s — 1) each contain at least two items
and bin s contains at least one item

This gives a total of 2(s — j) +- 1 items, none of which fits into pying 1 2 3 -1
2,3, ...,

otherwise we would have packed them there —/

First fit decreasing (FFD)

J

g DL

Consider bin j = [%-‘ (s is the number of bins FFD uses on this input)

consider

Case 2: Bin j contains only items of size < 1/2 pairing these with these

soBinsj,(j +1),...,(s —2),(s — 1) each contain at least two-i
in s contains at least one item

This gives a total of 2(s — j) +- 1 items, none of which fits into pying 1 2 3 -1
2,3, ...,

sol > min{j —1,2(s —j) + 1}

®___——— recall I is the total weight of all items

First fit decreasing (FFD)

J

g DL

Consider bin j = [%-‘ (s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size < 1/2

soBinsj,(j +1),...,(s—2),(s — 1) each contain at least two items
and bin s contains at least one item

This gives a total of 2(s — j) +- 1 items, none of which fits into pying 1 2 3 -1
2,3, ...,

sol > min{j —1,2(s —j) + 1}

First fit decreasing (FFD)

J

g DL

Consider bin j = [%-‘ (s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size < 1/2

soBinsj,(j +1),...,(s—2),(s — 1) each contain at least two items
and bin s contains at least one item

This gives a total of 2(s — j) +- 1 items, none of which fits into pying 1 2 3 -1
2,3, ...,

sol >min{j —1,2(s — j) + 1} > [2s/3] — 1
by plugging in j = [2s/3]

First fit decreasing (FFD)

J

gL

Consider bin j = {%-‘ (s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size < 1/2

As [25/3] —1 < I and I < Opt
we have that [2s/3| — 1 < Opt
.. but both sides are integers. ..
so [2s/3] < Opt
finally ...2s/3 < [2s/3] < Opt
ors < (3/2)Opt

First fit decreasing (FFD)

J

o L

Consider bin j = [%-‘ (s is the number of bins FFD uses on this input)

Case 1: Bin j contains an item of size > 1/2

Case 2: Bin j contains only items of size < 1/2
30pt

in both cases...s < 5

So FFD is a 3/ 2-approximation algorithm for BINPACKING

B s

Approximation Algorithms Summary
An algorithm A is an c-approximation algorithm for problem P if,

o A runs in polynomial time

o A always outputs a solution with value s within an « factor of Opt

Here P is an optimisation problem with optimal solution of value Opt

If P is a maximisation problem, < s < Opt

Opt
(8%
If P is a minimisation problem (like BINPACKING), Opt < s < a - Opt

We have seen Next Fit which is a 2-approximation algorithm for BINPACKING

which runs in O(n) time

and First Fit Decreasing which is a 3 / 2-approximation algorithm for BINPACKING

which runs in O(n?) time

Bin Packing is NP-hard so solving it exactly in polynomial time would prove that P = NP

