

Advanced Algorithms – COMS31900

Approximation algorithms part one

Constant factor approximations

Raphaël Clifford

Slides by Benjamin Sach

NP-completeness recap

University of BR ISTOI

NP is the class of *decision* problems we can check the answer to in polynomial time

A problem A is NP-complete if

A is in NP Every B in NP has a polynomial time reduction to A(this second part is the definition of NP-hard)

If we could solve A quickly we could solve every problem in NP quickly They are the 'hardest' problems in NP

So if a problem is NP-complete, we give up right?

I is the sum of all item sizes

Problem pack all items into the fewest possible bins

This is an example of an optimisation problem

	_									
1	:									
	_	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				:			

Problem pack all items into the fewest possible bins

This is an example of an optimisation problem

Т								
	•							-
		:						
						- 1 1		

1

Problem pack all items into the fewest possible bins

Next fit

If item i fits into bin j: pack it, i++; else j++;

Next fit

Next fit

Next fit runs in O(n) time but how good is it?

Let fill(i) be the sum of item sizes in bin i

and *s* be the number of non-empty bins (using Next fit)

the sum of the / item weights

Observe that $\operatorname{fill}(2i-1) + \operatorname{fill}(2i) > 1$ (for $1 \leq 2i \leq s$)

so
$$\lfloor s/2 \rfloor < \sum_{1 \leqslant 2i \leqslant s} \operatorname{fill}(2i-1) + \operatorname{fill}(2i)_I$$

the sum of the

item weights

Next fit

Next fit runs in O(n) time but how good is it?

Let fill(i) be the sum of item sizes in bin i

and *s* be the number of non-empty bins (using Next fit)

Observe that $\operatorname{fill}(2i-1) + \operatorname{fill}(2i) > 1$ (for $1 \leq 2i \leq s$)

so
$$\lfloor s/2 \rfloor < \sum_{1 \leqslant 2i \leqslant s} \operatorname{fill}(2i-1) + \operatorname{fill}(2i) I \leqslant \operatorname{Opt}$$

Next fit

Next fit runs in O(n) time but how good is it?

Let fill(i) be the sum of item sizes in bin i

and s be the number of non-empty bins (using Next fit)

Observe that $\operatorname{fill}(2i-1) + \operatorname{fill}(2i) > 1$ (for $1 \leq 2i \leq s$)

so
$$\lfloor s/2 \rfloor < \sum_{1 \leqslant 2i \leqslant s} \operatorname{fill}(2i-1) + \operatorname{fill}(2i) I \leqslant \operatorname{Opt}$$

therefore $s \leqslant 2 \cdot \mathrm{Opt}$ in other words the Next Fit is never worse than twice the optimal

Approximation Algorithms

An algorithm A is an α -approximation algorithm for problem P if,

 $\circ \, A$ runs in polynomial time

 \circ A always outputs a solution with value s within an α factor of Opt

Here P is an optimisation problem with optimal solution of value Opt

- If P is a *maximisation* problem, $\frac{\text{Opt}}{\alpha} \leqslant s \leqslant \text{Opt}$
- If P is a *minimisation* problem (like BINPACKING), $\mathrm{Opt} \leqslant s \leqslant lpha \cdot \mathrm{Opt}$

We have seen a 2-approximation algorithm for BINPACKING the number of bins used, s is always between Opt and $2 \cdot Opt$

In the examples we consider, lpha will be a constant but it could depend on n (the input size)

We have seen that Next fit is a 2-approximation algorithm for Bin packing which runs in O(n) time

can we do better?

Step 1: Sort the items into non-increasing order

Step 1: Sort the items into non-increasing order

Step 2: Put each item in the first (left-most) bin it fits in

FFD runs in $O(n^2)$ time but how good is it?

Consider bin $j = \left\lceil \frac{2s}{3} \right\rceil$ (s is the number of bins FFD uses on this input)

Case 1: Bin j contains an item of size > 1/2

Every bin $j'\leqslant j$ contains an item of size >1/2

because we packed big things first and each thing was packed in the lowest numbered bin

Consider bin $j = \left\lceil \frac{2s}{3} \right\rceil$ (s is the number of bins FFD uses on this input)

Case 1: Bin j contains an item of size > 1/2

Every bin $j' \leqslant j$ contains an item of size > 1/2

each of these items has to be in a different bin (even in Opt)

So Opt uses at least
$$\frac{2s}{3}$$
 bins or $\dots s \leqslant \frac{3 \text{Opt}}{2}$

Consider bin $j = \left\lceil \frac{2s}{3} \right\rceil$ (s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size $\leq 1/2$

when FFD packed the first item into bin j,

Consider bin $j = \left\lceil \frac{2s}{3} \right\rceil$ (s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size $\leq 1/2$

so Bins $j, (j+1), \ldots, (s-2), (s-1)$ each contain at least two items and bin s contains at least one item

This gives a total of 2(s - j) + 1 items, none of which fits into bins $1, 2, 3, \dots, (j - 1)$ otherwise we would have packed them there

Consider bin $j = \left\lceil \frac{2s}{3} \right\rceil$ (s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size $\leq 1/2$

so Bins $j, (j+1), \ldots, (s-2), (s-1)$ each contain at least two items and bin s contains at least one item

This gives a total of 2(s-j)+1 items, none of which fits into bins $1, 2, 3, \ldots, (j-1)$

so $I>\min\{j-1,2(s-j)+1\}$

Consider bin $j = \left\lceil \frac{2s}{3} \right\rceil$ (s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size $\leqslant 1/2$

so Bins $j, (j+1), \ldots, (s-2), (s-1)$ each contain at least two items and bin s contains at least one item

This gives a total of 2(s-j)+1 items, none of which fits into bins $1, 2, 3, \ldots, (j-1)$

so $I > \min\{j-1, 2(s-j)+1\} \geqslant \lceil 2s/3 \rceil - 1$

by plugging in $j = \lceil 2s/3 \rceil$

Consider bin $j = \left\lceil \frac{2s}{3} \right\rceil$ (s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size $\leq 1/2$

As $\lceil 2s/3 \rceil - 1 < I$ and $I \leqslant \mathrm{Opt}$

we have that $\lceil 2s/3 \rceil - 1 < Opt$

... but both sides are integers...

so $\lceil 2s/3 \rceil \leqslant \text{Opt}$ finally ... $2s/3 \leqslant \lceil 2s/3 \rceil \leqslant \text{Opt}$

or $s \leqslant (3/2)$ Opt

Consider bin $j = \left\lceil \frac{2s}{3} \right\rceil$ (s is the number of bins FFD uses on this input)

Case 1: Bin j contains an item of size > 1/2

Case 2: Bin j contains only items of size $\leq 1/2$ in both cases... $s \leq \frac{3\text{Opt}}{2}$

So FFD is a 3/2-approximation algorithm for BINPACKING

Approximation Algorithms Summary

An algorithm A is an α -approximation algorithm for problem P if,

 $\circ A$ runs in polynomial time

 \circ A always outputs a solution with value s within an lpha factor of Opt

Here P is an optimisation problem with optimal solution of value Opt

If P is a *maximisation* problem, $\frac{\text{Opt}}{\alpha} \leqslant s \leqslant \text{Opt}$

If P is a *minimisation* problem (like BINPACKING), $\mathrm{Opt} \leqslant s \leqslant \alpha \cdot \mathrm{Opt}$

We have seen Next Fit which is a 2-approximation algorithm for BINPACKING which runs in O(n) time

and First Fit Decreasing which is a 3/2-approximation algorithm for BINPACKING which runs in $O(n^2)$ time

Bin Packing is NP-hard so solving it exactly in polynomial time would prove that $\mathrm{P}=\mathrm{NP}$