
Advanced Algorithms – COMS31900

Approximation algorithms part one

Constant factor approximations

Raphaël Clifford

Slides by Benjamin Sach

NP-completeness recap

A problem A is NP-complete if

NP is the class of decision problems we can
check the answer to in polynomial time

A is in NP

Every B in NP has a polynomial time reduction to A

If we could solve A quickly we could solve every problem in NP quickly

They are the ‘hardest’ problems in NP

So if a problem is NP-complete, we give up right?

(this second part is the definition of NP-hard)

Bin packing

Bins

1

Items

1

4/8 4/8
7/8

3/82/82/8

0 < |Item| ⩽ 1

|Bin| = 1 and there is an unlimited number of bins. . .

I is the sum of all item sizes

Bin packing

1

1

Problem pack all items into the fewest possible bins

4/8 4/8
7/8

2/82/8

3/8

This is an example of an optimisation problem

Bin packing

1

1

Problem pack all items into the fewest possible bins

4/8

4/8

7/8

2/8

2/8

3/8

This is an example of an optimisation problem

Bin packing

1

1

Problem pack all items into the fewest possible bins

4/8

4/8

7/8

2/8

2/8

3/8

The BINPACKING problem is known to be NP-hard

and the decision version. . . “Can you pack the items into at most k bins?”

is NP-complete

In the decision version,
k is part of the input

Next fit

1

1

4/8 4/8
7/8

3/82/82/8

If item i fits into bin j: pack it, i++; else j++;

Next fit

1

1

If item i fits into bin j: pack it, i++; else j++;

4/8

2/8

4/8
7/8

2/8

3/8

Next fit

1

1

4/8

2/8

4/8
7/8

2/8

3/8

Next fit runs in O(n) time but how good is it?

where n is the number of items

Next fit

1

4/8

2/8

4/8
7/8

2/8

3/8

Next fit runs in O(n) time but how good is it?

Let fill(i) be the sum of item sizes in bin i

Observe that fill(2i− 1) + fill(2i) > 1 (for 1 ⩽ 2i ⩽ s)

and s be the number of non-empty bins (using Next fit)

so ⌊s/2⌋ <
∑

1⩽2i⩽s

fill(2i− 1) + fill(2i)⩽ I

the sum of the
item weights

Next fit

1

4/8

2/8

4/8
7/8

2/8

3/8

Next fit runs in O(n) time but how good is it?

Let fill(i) be the sum of item sizes in bin i

Observe that fill(2i− 1) + fill(2i) > 1 (for 1 ⩽ 2i ⩽ s)

and s be the number of non-empty bins (using Next fit)

so ⌊s/2⌋ <
∑

1⩽2i⩽s

fill(2i− 1) + fill(2i)⩽ I ⩽ Opt

the sum of the
item weights

the optimal number of bins

Next fit

1

4/8

2/8

4/8
7/8

2/8

3/8

Next fit runs in O(n) time but how good is it?

Let fill(i) be the sum of item sizes in bin i

Observe that fill(2i− 1) + fill(2i) > 1 (for 1 ⩽ 2i ⩽ s)

and s be the number of non-empty bins (using Next fit)

so ⌊s/2⌋ <
∑

1⩽2i⩽s

fill(2i− 1) + fill(2i)⩽ I ⩽ Opt

therefore s ⩽ 2 ·Opt in other words the Next Fit is never worse than twice the optimal

Approximation Algorithms

An algorithm A is an α-approximation algorithm for problem P if,

◦A runs in polynomial time

◦A always outputs a solution with value s

Here P is an optimisation problem with optimal solution of value Opt

• If P is a maximisation problem, Opt
α ⩽ s ⩽ Opt

within an α factor of Opt

• If P is a minimisation problem (like BINPACKING), Opt ⩽ s ⩽ α ·Opt

We have seen a 2-approximation algorithm for BINPACKING

the number of bins used, s is always between Opt and 2 ·Opt

In the examples we consider, α will be a constant but it could depend on n (the input size)

1

4/8

2/8

4/8
7/8

2/8

3/8

We have seen that Next fit is a 2-approximation algorithm for Bin packing
which runs in O(n) time

can we do better?

First fit decreasing (FFD)

1

1

Step 1: Sort the items into non-increasing order

4/8 4/8
7/8

3/82/82/8

First fit decreasing (FFD)

1

1

4/8 4/8
7/8

3/8 2/8 2/8

Step 1: Sort the items into non-increasing order

First fit decreasing (FFD)

1

1

4/8 4/8
7/8

3/8 2/8 2/8

Step 2: Put each item in the first (left-most) bin it fits in

First fit decreasing (FFD)

1

1

Step 2: Put each item in the first (left-most) bin it fits in

7/8
4/8

4/8

3/8

2/8

2/8

this will be important

for the proof

First fit decreasing (FFD)

1

1

7/8
4/8

4/8

3/8

2/8

2/8

FFD runs in O(n2) time but how good is it?

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 1: Bin j contains an item of size > 1/2

Every bin j′ ⩽ j contains an item of size > 1/2

because we packed big things first and each thing was

packed in the lowest numbered bin

j

ss

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 1: Bin j contains an item of size > 1/2

Every bin j′ ⩽ j contains an item of size > 1/2

each of these items has to be in a different bin (even in Opt)

So Opt uses at least 2s
3 bins

or. . .s ⩽
3Opt

2

j

ss

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size ⩽ 1/2

when FFD packed the first item into bin j,

j

ss

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size ⩽ 1/2

This gives a total of 2(s− j) + 1 items, none of which fits into bins 1, 2, 3, . . . , (j − 1)

otherwise we would have packed them there

j

ss

2+ 2+ 2+ 2+ 1+

so Bins j, (j + 1), . . . , (s− 2), (s− 1) each contain at least two items
and bin s contains at least one item

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size ⩽ 1/2

This gives a total of 2(s− j) + 1 items, none of which fits into bins 1, 2, 3, . . . , (j − 1)

so I > min{j − 1, 2(s− j) + 1}
recall I is the total weight of all items

pairing these with these
considerconsider

j

ss

so Bins j, (j + 1), . . . , (s− 2), (s− 1) each contain at least two items
and bin s contains at least one item

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size ⩽ 1/2

This gives a total of 2(s− j) + 1 items, none of which fits into bins 1, 2, 3, . . . , (j − 1)

so I > min{j − 1, 2(s− j) + 1}

j

ss

so Bins j, (j + 1), . . . , (s− 2), (s− 1) each contain at least two items
and bin s contains at least one item

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size ⩽ 1/2

This gives a total of 2(s− j) + 1 items, none of which fits into bins 1, 2, 3, . . . , (j − 1)

so I > min{j − 1, 2(s− j) + 1}⩾ ⌈2s/3⌉ − 1

by plugging in j = ⌈2s/3⌉

j

ss

so Bins j, (j + 1), . . . , (s− 2), (s− 1) each contain at least two items
and bin s contains at least one item

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

Case 2: Bin j contains only items of size ⩽ 1/2

As ⌈2s/3⌉ − 1 < I

we have that ⌈2s/3⌉ − 1 < Opt

and I ⩽ Opt

. . . but both sides are integers. . .

so ⌈2s/3⌉ ⩽ Opt

finally . . .2s/3 ⩽ ⌈2s/3⌉ ⩽ Opt

or s ⩽ (3/2)Opt

j

ss

First fit decreasing (FFD)

Consider bin j =
⌈
2s
3

⌉
(s is the number of bins FFD uses on this input)

So FFD is a 3/2-approximation algorithm for BINPACKING

Case 2: Bin j contains only items of size ⩽ 1/2

Case 1: Bin j contains an item of size > 1/2

in both cases. . .s ⩽
3Opt

2

j

ss

Approximation Algorithms Summary

An algorithm A is an α-approximation algorithm for problem P if,

◦A runs in polynomial time

◦A always outputs a solution with value s

Here P is an optimisation problem with optimal solution of value Opt

If P is a maximisation problem, Opt
α ⩽ s ⩽ Opt

within an α factor of Opt

If P is a minimisation problem (like BINPACKING), Opt ⩽ s ⩽ α ·Opt

We have seen Next Fit which is a 2-approximation algorithm for BINPACKING

which runs in O(n) time

and First Fit Decreasing which is a 3/2-approximation algorithm for BINPACKING

which runs in O(n2) time

Bin Packing is NP-hard so solving it exactly in polynomial time would prove that P = NP

