Precision-Recall-Gain Curves: PR Analysis Done Right Supplementary Material

Peter A. Flach

Intelligent Systems Laboratory
University of Bristol, United Kingdom
Peter.Flach@bristol.ac.uk

Meelis Kull

Intelligent Systems Laboratory
University of Bristol, United Kingdom
Meelis.Kull@bristol.ac.uk

Theorem 1. Let $P_{1}=\left(\operatorname{prec} G_{1}, \operatorname{rec} G_{1}\right)$ and $P_{2}=\left(\operatorname{prec} G_{2}, \operatorname{rec} G_{2}\right)$ be points in the Precision-RecallGain space representing the performance of Models 1 and 2 with contingency tables C_{1} and C_{2}. Then a model with an interpolated contingency table $C_{*}=\lambda C_{1}+(1-\lambda) C_{2}$ has precision gain $\operatorname{prec} G_{*}=\mu \operatorname{prec} G_{1}+(1-\mu)$ prec G_{2} and recall gain $\operatorname{rec} G_{*}=\mu \operatorname{rec} G_{1}+(1-\mu)$ rec G_{2}, where $\mu=$ $\left(\lambda T P_{1}\right) /\left(\lambda T P_{1}+(1-\lambda) T P_{2}\right)$.

Proof: Let us denote $T P_{*}=\lambda T P_{1}+(1-\lambda) T P_{2}$ and $F P_{*}=\lambda F P_{1}+(1-\lambda) F P_{2}$. Then $\mu=$ $\lambda T P_{1} / T P_{*}$ and

$$
\mu \frac{F P_{1}}{T P_{1}}+(1-\mu) \frac{F P_{2}}{T P_{2}}=\frac{\lambda T P_{1}}{T P_{*}} \frac{F P_{1}}{T P_{1}}+\frac{(1-\lambda) T P_{2}}{T P_{*}} \frac{F P_{2}}{T P_{2}}=\frac{\lambda F P_{1}+(1-\lambda) F P_{2}}{T P_{*}}=\frac{F P_{*}}{T P_{*}} .
$$

From this it follows that

$$
\begin{aligned}
\mu \text { prec } G_{1}+(1-\mu) \text { prec }_{2} & =\mu\left(1-\frac{\pi}{1-\pi} \frac{F P_{1}}{T P_{1}}\right)+(1-\mu)\left(1-\frac{\pi}{1-\pi} \frac{F P_{2}}{T P_{2}}\right) \\
& =1-\frac{\pi}{1-\pi}\left(\mu \frac{F P_{1}}{T P_{1}}+(1-\mu) \frac{F P_{2}}{T P_{2}}\right)=1-\frac{\pi}{1-\pi} \frac{F P_{*}}{T P_{*}}
\end{aligned}
$$

but this is equal to $\operatorname{prec} G_{*}$ since $F P_{*}$ and $T P_{*}$ are entries in the interpolated contingency table C_{*}. The proof for recall gain is identical, with $F N$ instead of $F P$.
Theorem 2. $\operatorname{prec} G+\beta^{2} \operatorname{rec} G=\left(1+\beta^{2}\right) F G_{\beta}$, with $F G_{\beta}=\frac{F_{\beta}-\pi}{(1-\pi) F_{\beta}}=1-\frac{\pi}{1-\pi} \frac{F P+\beta^{2} F N}{\left(1+\beta^{2}\right) T P}$.
Proof:

$$
\begin{aligned}
\operatorname{prec} G+\beta^{2} r e c G & =1-\frac{\pi}{1-\pi} \frac{F P}{T P}+\beta^{2}\left(1-\frac{\pi}{1-\pi} \frac{F N}{T P}\right) \\
& =1+\beta^{2}-\frac{\pi}{1-\pi} \frac{F P+\beta^{2} F N}{T P} \\
& =\left(1+\beta^{2}\right)\left(1-\frac{\pi}{1-\pi} \frac{F P+\beta^{2} F N}{\left(1+\beta^{2}\right) T P}\right) \\
& =\left(1+\beta^{2}\right) F G_{\beta}
\end{aligned}
$$

Theorem 3. Let $\alpha=1 /\left(1+\beta^{2}\right)$ and $\Delta_{\gamma}=\operatorname{rec} G / \pi-\operatorname{prec} G / \gamma$ with $\gamma \geq 1-\pi$. Let the operating points of a model with area under the Precision-Recall-Gain curve $A U P R G$ be chosen such that Δ_{γ} is uniformly distributed within $\left[-y_{0} / \gamma, 1 / \pi\right]$. Then the expected $F G_{\beta}$ score is equal to

$$
\begin{equation*}
\mathbb{E}\left[F G_{\beta}\right]=\frac{(\alpha \gamma+(1-\alpha) \pi) A U P R G+\alpha \pi y_{0}^{2} / 2+(1-\alpha) \gamma / 2}{\gamma+\pi y_{0}} \tag{1}
\end{equation*}
$$

Proof: First we prove that Δ_{γ} is monotonically increasing when lowering the threshold t to have more positive predictions. This is needed to calculate expected value of $F G_{\beta}$ in terms of integrals over Δ_{γ}. For monotonicity we prove that $\Delta_{\gamma} \leq \Delta_{\gamma}^{\prime}$ where Δ_{γ} and Δ_{γ}^{\prime} correspond to thresholds t and t^{\prime}, respectively, with $t>t^{\prime}$. This holds if and only if:

$$
\frac{\operatorname{rec} G}{\pi}-\frac{\operatorname{prec} G}{\gamma} \leq \frac{\operatorname{rec} G^{\prime}}{\pi}-\frac{\operatorname{prec} G^{\prime}}{\gamma} \Longleftrightarrow \frac{\operatorname{prec} G^{\prime}-\operatorname{prec} G}{\gamma} \leq \frac{\operatorname{rec} G^{\prime}-\operatorname{rec} G}{\pi}
$$

If $\operatorname{rec} G^{\prime}=\operatorname{rec} G$ then this holds, because then $\operatorname{prec} G^{\prime}<\operatorname{prec} G$. Due to $r e c G^{\prime} \geq \operatorname{rec} G$ it is enough to prove that

$$
\frac{\operatorname{prec} G^{\prime}-\operatorname{prec} G}{\operatorname{rec} G^{\prime}-\operatorname{rec} G} \leq \frac{\gamma}{\pi}
$$

To show this we first note that for any $x>0$ the equality $\frac{x-\pi}{(1-\pi) x}=\frac{1}{1-\pi}\left(1-\pi \frac{1}{x}\right)$ holds, so we have:

$$
\begin{aligned}
& \frac{\text { prec }^{\prime}-\text { prec } G}{r e c G^{\prime}-r e c G}=\frac{1 / \text { prec }-1 / \text { prec }^{\prime}}{1 / r e c-1 / r e c^{\prime}}=\frac{(F P+T P) / T P-\left(F P^{\prime}+T P^{\prime}\right) / T P^{\prime}}{\pi n / T P-\pi n / T P^{\prime}} \\
& =\frac{F P / T P-F P^{\prime} / T P^{\prime}}{\pi n\left(1 / T P-1 / T P^{\prime}\right)}=\frac{F P\left(1 / T P-1 / T P^{\prime}\right)-\left(F P^{\prime}-F P\right) / T P^{\prime}}{\pi n\left(1 / T P-1 / T P^{\prime}\right)} \\
& =\frac{F P}{\pi n}-\frac{F P^{\prime}-F P}{\pi n\left(T P^{\prime} / T P-1\right)}
\end{aligned}
$$

The first term is upper bounded by $\frac{(1-\pi) n}{\pi n}=\frac{1-\pi}{\pi}$ because the false positives are a subset of all negatives. Since $F P^{\prime} \geq F P$ and $T P^{\prime} \geq T P$ due to more positive predictions the subtracted second term cannot be negative. Therefore, we can upper bound this quantity as follows:

$$
\frac{\operatorname{prec} G^{\prime}-\operatorname{prec} G}{\operatorname{rec} G^{\prime}-\operatorname{rec} G} \leq \frac{1-\pi}{\pi}+0 \leq \frac{\gamma}{\pi}
$$

where the last inequality is due to $\gamma \geq 1-\pi$.
This concludes the proof of monotonicity and we can now calculate expected $F G_{\beta}$ over uniform Δ_{γ} as follows:

$$
\mathbb{E}\left[F G_{\beta}\right]=\left(\int_{-y_{0} / \gamma}^{1 / \pi} F G_{\beta} d \Delta_{\gamma}\right) /\left(\int_{-y_{0} / \gamma}^{1 / \pi} d \Delta_{\gamma}\right)
$$

We have $F G_{\beta}=(1-\alpha)$ rec $G+\alpha$ prec G and so

$$
\begin{aligned}
\mathbb{E}\left[F G_{\beta}\right] & =\left(\int_{-y_{0} / \gamma}^{1 / \pi}((1-\alpha) \pi r e c G / \pi+\alpha \text { prec } G-(1-\alpha) \pi p r e c G / \gamma+(1-\alpha) \pi p r e c G / \gamma) d \Delta_{\gamma}\right) /\left(1 / \pi+y_{0} / \gamma\right) \\
& =\left(\int_{-y_{0} / \gamma}^{1 / \pi}\left((1-\alpha) \pi \Delta_{\gamma}+(\alpha+(1-\alpha) \pi / \gamma) \operatorname{prec} G\right) d \Delta_{\gamma}\right) \pi \gamma /\left(\gamma+\pi y_{0}\right) \\
& =\frac{(1-\alpha) \pi^{2} \gamma}{\gamma+\pi y_{0}} \int_{-y_{0} / \gamma}^{1 / \pi} \Delta_{\gamma} d \Delta_{\gamma}+\frac{\gamma \pi \alpha+(1-\alpha) \pi^{2}}{\gamma+\pi y_{0}} \int_{-y_{0} / \gamma}^{1 / \pi} \operatorname{prec} G d \Delta_{\gamma} \\
& =\frac{(1-\alpha) \pi^{2} \gamma}{\gamma+\pi y_{0}}\left(1 / \pi^{2}-y_{0}^{2} / \gamma^{2}\right) / 2+\frac{\gamma \pi \alpha+(1-\alpha) \pi^{2}}{\gamma+\pi y_{0}} \int_{0}^{1} \operatorname{prec} G \frac{d \Delta_{\gamma}}{d r e c G} d r e c G
\end{aligned}
$$

Since $\frac{d \Delta_{\gamma}}{d r e c G}=\frac{1}{\pi}-\frac{1}{\gamma} \frac{d \operatorname{prec} G}{d r e c G}$, we can rewrite the integral as follows:

$$
\begin{aligned}
& \int_{0}^{1} \operatorname{prec} G \frac{d \Delta_{\gamma}}{d \operatorname{rec} G} d \operatorname{rec} G=\frac{1}{\pi} \int_{0}^{1} \operatorname{prec} G d \operatorname{rec} G-\frac{1}{\gamma} \int_{0}^{1} \operatorname{prec} G \frac{d \operatorname{prec} G}{d \operatorname{rec} G} d \operatorname{rec} G \\
& =\frac{1}{\pi} A U P R G-\frac{1}{\gamma} \int_{y_{0}}^{0} \operatorname{prec} G d \operatorname{prec} G=\frac{1}{\pi} A U P R G+\frac{1}{\gamma} y_{0}^{2} / 2
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\mathbb{E}\left[F G_{\beta}\right] & =\frac{(1-\alpha) \pi^{2} \gamma}{\gamma+\pi y_{0}} \cdot \frac{\gamma^{2}-\pi^{2} y_{0}^{2}}{2 \gamma^{2} \pi^{2}}+\frac{\gamma \pi \alpha+(1-\alpha) \pi^{2}}{\gamma+\pi y_{0}}\left(\frac{1}{\pi} A U P R G+\frac{1}{\gamma} y_{0}^{2} / 2\right) \\
& =\frac{(1-\alpha)\left(\gamma^{2}-\pi^{2} y_{0}^{2}\right)}{2 \gamma\left(\gamma+\pi y_{0}\right)}+\frac{\gamma \pi \alpha y_{0}^{2}+(1-\alpha) \pi^{2} y_{0}^{2}}{2 \gamma\left(\gamma+\pi y_{0}\right)}+\frac{\gamma \alpha+(1-\alpha) \pi}{\gamma+\pi y_{0}} A U P R G \\
& =\frac{(1-\alpha) \gamma^{2}+\gamma \pi \alpha y_{0}^{2}}{2 \gamma\left(\gamma+\pi y_{0}\right)}+\frac{\alpha \gamma+(1-\alpha) \pi}{\gamma+\pi y_{0}} A U P R G \\
& =\frac{\alpha \gamma+(1-\alpha) \pi}{\gamma+\pi y_{0}} A U P R G+\frac{\alpha \pi y_{0}^{2}+(1-\alpha) \gamma}{2\left(\gamma+\pi y_{0}\right)} \\
& =\frac{(\alpha \gamma+(1-\alpha) \pi)\left(A U P R G+\alpha \pi y_{0}^{2} / 2+(1-\alpha) \gamma / 2\right)}{\gamma+\pi y_{0}}
\end{aligned}
$$

Corollary. Under uniform Δ_{γ} for $\gamma=1-\pi$ the expected $F G_{1}$ equals to the following:

$$
\mathbb{E}\left[F G_{1}\right]=\frac{A U P R G / 2+1 / 4-\pi\left(1-y_{0}^{2}\right) / 4}{1-\pi\left(1-y_{0}\right)}
$$

Theorem 4. Let two classifiers be such that prec $_{1}>$ prec $_{2}$ and rec $c_{1}<r e c_{2}$, then these two classifiers have the same F_{β} score if and only if

$$
\begin{equation*}
\beta^{2}=-\frac{1 / \text { rrec }_{1}-1 / \text { prec }_{2}}{1 / \text { rec }_{1}-1 / \text { rec }_{2}} \tag{2}
\end{equation*}
$$

Proof: The slope of the line segment connecting the two classifiers in PRG space is

$$
\frac{\operatorname{prec} G_{1}-\operatorname{prec}_{2}}{\operatorname{rec} G_{1}-\operatorname{rec} G_{2}}=\frac{\left(1 / \text { prec }_{1}-1 / \pi\right)-\left(1 / \text { prec }_{2}-1 / \pi\right)}{\left(1 / \text { rec }_{1}-1 / \pi\right)-\left(1 / \text { rec }_{2}-1 / \pi\right)}
$$

according to the first expression in Equation 3 in the main paper (the denominators cancel out). This slope is equal to $-\beta^{2}$ according to Theorem 2 and establishes a line of constant $F G_{\beta}$ and hence constant F_{β}.

