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Theorem 1. Let P1 = (precG1,recG1) and P2 = (precG2,recG2) be points in the Precision-Recall-
Gain space representing the performance of Models 1 and 2 with contingency tables C1 and C2.
Then a model with an interpolated contingency table C∗ = λC1 + (1− λ )C2 has precision gain
precG∗ = µprecG1 +(1− µ)precG2 and recall gain recG∗ = µrecG1 +(1− µ)recG2, where µ =
(λT P1)/(λT P1 +(1−λ )T P2).

Proof: Let us denote T P∗ = λT P1 + (1− λ )T P2 and FP∗ = λFP1 + (1− λ )FP2. Then µ =
λT P1/T P∗ and
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From this it follows that
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but this is equal to precG∗ since FP∗ and T P∗ are entries in the interpolated contingency table C∗.
The proof for recall gain is identical, with FN instead of FP. �
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Theorem 3. Let α = 1/(1+β 2) and ∆γ = recG/π − precG/γ with γ ≥ 1−π . Let the operating
points of a model with area under the Precision-Recall-Gain curve AUPRG be chosen such that ∆γ

is uniformly distributed within [−y0/γ,1/π]. Then the expected FGβ score is equal to
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Proof: First we prove that ∆γ is monotonically increasing when lowering the threshold t to have
more positive predictions. This is needed to calculate expected value of FGβ in terms of integrals
over ∆γ . For monotonicity we prove that ∆γ ≤ ∆′γ where ∆γ and ∆′γ correspond to thresholds t and
t ′, respectively, with t > t ′. This holds if and only if:
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If recG′ = recG then this holds, because then precG′ < precG. Due to recG′ ≥ recG it is enough to
prove that
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To show this we first note that for any x > 0 the equality x−π
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x ) holds, so we have:
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The first term is upper bounded by (1−π)n
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because the false positives are a subset of all

negatives. Since FP′ ≥ FP and T P′ ≥ T P due to more positive predictions the subtracted second
term cannot be negative. Therefore, we can upper bound this quantity as follows:
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where the last inequality is due to γ ≥ 1−π .

This concludes the proof of monotonicity and we can now calculate expected FGβ over uniform ∆γ

as follows:
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We have FGβ = (1−α)recG+αprecG and so
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Therefore,
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Corollary. Under uniform ∆γ for γ = 1−π the expected FG1 equals to the following:
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0)/4
1−π(1− y0)

Theorem 4. Let two classifiers be such that prec1 > prec2 and rec1 < rec2, then these two classifiers
have the same Fβ score if and only if

β
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Proof: The slope of the line segment connecting the two classifiers in PRG space is
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recG1− recG2
=

(1/prec1−1/π)− (1/prec2−1/π)

(1/rec1−1/π)− (1/rec2−1/π)

according to the first expression in Equation 3 in the main paper (the denominators cancel out). This
slope is equal to −β 2 according to Theorem 2 and establishes a line of constant FGβ and hence
constant Fβ . �
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