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1. Introduction and Motivation
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(left) ROC curve with non-dominated points (red circles) and convex hull (red dotted

line). (right) Corresponding Precision-Recall curve with non-dominated points (red
circles).
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1. Introduction and Motivation

Properties of ROC curves I

ROC curves are widely used in machine learning and their main properties are
well understood . These properties can be summarised as follows.

Universal baselines: the major diagonal of an ROC plot depicts the line of
random performance which can be achieved without training; it is universal
in the sense that it doesn’t depend on the class distribution.

Linear interpolation: any point on a straight line between two points
representing the performance of two classifiers (or thresholds) A and B can
be achieved by making a suitably biased random choice between A and B .
The slope of the connecting line determines the trade-off between the
classes under which any linear combination of A and B would yield
equivalent performance. In particular, test set accuracy assuming uniform
misclassification costs is represented by accuracy isometrics with slope
(1−π)/π, where π is the proportion of positives .
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1. Introduction and Motivation

Properties of ROC curves II
Optimality: a point D dominates another point E if D’s tpr and fpr are not

worse than E’s and at least one of them is strictly better. The set of
non-dominated points – the Pareto front – establishes the set of classifiers
or thresholds that are optimal under some trade-off between the classes.
Due to linearity any interpolation between non-dominated points is both
achievable and non-dominated, giving rise to the convex hull (ROCCH).

Area: the proportion of the unit square which falls under an ROC curve
(AUROC) estimates the probability that a randomly chosen positive is
ranked higher by the model than a randomly chosen negative .
There is a linear relationship between AUROC = ∫ 1

0 tpr d fpr and the
expected accuracy acc =πtpr+ (1−π)(1− fpr) averaged over all possible
predicted positive rates rate =πtpr+ (1−π)fpr:

E [acc] =
∫ 1

0
acc d rate =π(1−π)(2AUROC −1)+1/2

For uniform class distributions this reduces to E [acc] = AUROC/2+1/4.
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1. Introduction and Motivation

Properties of ROC curves III
Calibration: slopes of convex hull segments can be interpreted as empirical

likelihood ratios associated with a particular interval of raw classifier scores.
This gives rise to a non-parametric calibration procedure which is also
called isotonic regression or pool adjacent violators and results in a
calibration map which maps each segment of ROCCH with slope s to a
calibrated score

c = πs

πs + (1−π)
= 1

1+ 1−π
π

1
s

Define a skew-sensitive version of accuracy as

accc , 2cπtpr+2(1− c)(1−π)(1− fpr)

(i.e., standard accuracy is accc=1/2) then a perfectly calibrated classifier
outputs, for every instance, the value of c for which the instance is on the
accc decision boundary.
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1. Introduction and Motivation

Contributions of this work

(i) We identify the problems with current practice in Precision-Recall curves by
demonstrating that they fail to satisfy each of the above properties in some
respect.
(ii) We propose a principled way to remedy all these problems by means of a
change of coordinates.
(iii) Our improved Precision-Recall-Gain curves enclose an area that is directly
related to expected F1 score – on a harmonic scale – in a similar way as AUROC
is related to expected accuracy.
(iv ) With Precision-Recall-Gain curves it is possible to calibrate a model for Fβ in
the sense that the predicted score for any instance determines the value of β for
which the instance is on the Fβ decision boundary.
(v ) We give experimental evidence that this matters by demonstrating that the
area under traditional Precision-Recall curves can easily favour models with
lower expected F1 score than others.
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2. Traditional Precision-Recall Analysis
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(left) ROC curve with non-dominated points (red circles) and convex hull (red dotted

line). (right) Corresponding Precision-Recall curve with non-dominated points (red
circles).
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2. Traditional Precision-Recall Analysis

PR plots are not like ROC plots I

Non-universal baselines: a random classifier has precision π and hence
baseline performance is a horizontal line which depends on the class
distribution.

Non-linear interpolation: precision in a linearly interpolated contingency table
is only a linear combination of the original precision values if the two
classifiers have the same predicted positive rate (which is impossible if the
two contingency tables arise from different decision thresholds on the same
model). More generally, it isn’t meaningful to take the arithmetic average of
precision values.

Non-convex Pareto front: the set of non-dominated operating points continues
to be well-defined but in the absence of linear interpolation this set isn’t
convex for PR curves, nor is it straightforward to determine by visual
inspection.
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2. Traditional Precision-Recall Analysis

PR plots are not like ROC plots II

Uninterpretable area: although many authors report the area under the PR
curve (AUPR) it doesn’t have a meaningful interpretation beyond the
geometric one of expected precision when uniformly varying the recall (and
even then the use of the arithmetic average cannot be justified).
Furthermore, PR plots have unachievable regions at the lower right-hand
side, the size of which depends on the class distribution .

No calibration: although some results exist regarding the relationship between
calibrated scores and F1 score these are unrelated to the PR curve. To the
best of our knowledge there is no published procedure to output scores that
are calibrated for Fβ – that is, which give the value of β for which the
instance is on the Fβ decision boundary.
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2. Traditional Precision-Recall Analysis

The Fβ score
The F1 score is defined as the harmonic mean of precision and recall:

F1 ,
2

1/prec+1/rec
= 2prec · rec

prec+ rec
= TP

TP+ (FP+FN)/2
(1)

This corresponds to accuracy in a modified contingency table:

Predicted ⊕ Predicted ª
Actual ⊕ TP FN Pos
Actual ª FP TP Neg − (TN −TP)

TP+FP Pos 2TP+FP+FN

The Fβ score is a weighted harmonic mean:

Fβ,
1

1
1+β2 /prec+ β2

1+β2 /rec
= (1+β2)TP

(1+β2)TP+FP+β2FN
(2)
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2. Traditional Precision-Recall Analysis

Related work

There is a range of recent results regarding the F -score:
(i) non-decomposability of the Fβ score, meaning it is not an average over
instances ;
(ii) estimators exist that are consistent: i.e., they are unbiased in the limit ;
(iii) given a model, operating points that are optimal for Fβ can be achieved by
thresholding the model’s scores ;
(iv ) a classifier yielding perfectly calibrated posterior probabilities has the
property that the optimal threshold for F1 is half the optimal F1 at that point. and
later by

The latter results tell us that optimal thresholds for Fβ are lower than optimal
thresholds for accuracy (or equal only in the case of the perfect model).
They don’t, however, tell us how to find such thresholds other than by tuning.
We demonstrate how to identify all Fβ-optimal thresholds for any β in a single
calibration procedure.
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3. Precision-Recall-Gain Curves 3.1 Baseline

Baseline

A random classifier that predicts positive with probability p has Fβ score
(1+β2)pπ/(p +β2π). Hence the baseline to beat is the always-positive
classifier rather than any random classifier. Any model with prec <π or rec <π

loses against this baseline, hence it makes sense to consider only precision and
recall values in the interval [π,1]. Any real-valued variable x ∈ [mi n,max] on a
harmonic scale can be linearised by the mapping 1/x−1/mi n

1/max−1/mi n = max·(x−mi n)
(max−mi n)·x .

Definition (Precision Gain and Recall Gain)

precG = prec−π

(1−π)prec
= 1− π

1−π

FP

TP
recG = rec−π

(1−π)rec
= 1− π

1−π

FN

TP
(3)

A Precision-Recall-Gain curve plots Precision Gain on the y-axis against Recall
Gain on the x-axis in the unit square (i.e., negative gains are ignored).
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3. Precision-Recall-Gain Curves 3.1 Baseline
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(left) Conventional PR curve with hyperbolic F1 isometrics (dotted lines) and the

baseline performance by the always-positive classifier (solid hyperbole). (right)
Precision-Recall-Gain curve with minor diagonal as baseline, parallel F1 isometrics and

a convex Pareto front.
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3. Precision-Recall-Gain Curves 3.2 Linearity and optimality

Linearity and optimality

Theorem

Let P1 = (precG1,recG1) and P2 = (precG2,recG2) be points in the
Precision-Recall-Gain space representing the performance of Models 1 and 2
with contingency tables C1 and C2. Then a model with an interpolated
contingency table C∗ =λC1 + (1−λ)C2 has precision gain
precG∗ =µprecG1 + (1−µ)precG2 and recall gain
recG∗ =µrecG1 + (1−µ)recG2, where µ=λT P1/(λT P1 + (1−λ)T P2).

Theorem

precG+β2recG = (1+β2)FGβ, with FGβ = Fβ−π
(1−π)Fβ

= 1− π
1−π

FP+β2FN
(1+β2)TP .

FGβ measures the gain in performance (on a linear scale) relative to a classifier
with both precision and recall – and hence Fβ – equal to π.
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3. Precision-Recall-Gain Curves 3.3 Area

Area

Define AUPRG = ∫ 1
0 precG d recG and ∆= recG/π−precG/(1−π). Hence,

−y0/(1−π) ≤∆≤ 1/π, where y0 denotes the precision gain at the operating
point where recall gain is zero.

Theorem

Let the operating points of a model with area under the Precision-Recall-Gain
curve AUPRG be chosen such that ∆ is uniformly distributed within
[−y0/(1−π),1/π]. Then the expected FG1 score is equal to

E [FG1] = AUPRG/2+1/4−π(1− y0
2)/4

1−π(1− y0)
(4)

In the special case where y0 = 1 the expected FG1 score is AUPRG/2+1/4.
The expected reciprocal F1 score can be calculated from the relationship
E [1/F1] = (1− (1−π)E [FG1])/π which follows from the definition of FGβ.
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3. Precision-Recall-Gain Curves 3.4 Calibration

Calibration

Theorem

Let two classifiers be such that prec1 > prec2 and rec1 < rec2, then these two
classifiers have the same Fβ score if and only if

β2 =−1/prec1 −1/prec2

1/rec1 −1/rec2
=−sPRG (5)

where sPRG is the slope of the connecting segment in the PRG plot.

We convert this slope to an F-calibrated score as follows:

cF = 1

1− sPRG

Notice that this cannot be obtained from the accuracy-calibrated score 1
1+ 1−π

π
1

sROC

.
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3. Precision-Recall-Gain Curves 3.4 Calibration
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(left) ROC curve with scores empirically calibrated for accuracy. The green dots

correspond to a regular grid in Precision-Recall-Gain space. (right)
Precision-Recall-Gain curve with scores calibrated for Fβ. The green dots correspond to

a regular grid in ROC space, clearly indicating that ROC analysis over-emphasises the

high-recall region.
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4. Practical examples
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(left) Comparison of AUPRG-ranks vs AUPR-ranks. Each cell shows how many models

across 886 OpenML tasks have these ranks among the 30 models in the same task.

(right) Comparison of AUPRG vs AUPR in OpenML tasks with IDs 3872 (white-clover)

and 3896 (ada-agnostic), with 30 models in each task. Some models perform worse

than random (AUPRG < 0) and are not plotted. The models represented by the two

encircled triangles are shown in detail in the next figure.
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4. Practical examples
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(left) ROC curves for AdaBoost (solid line) and Logistic Regression (dashed line) on the

white-clover dataset (OpenML run IDs 145651 and 267741, respectively). (middle)
Corresponding PR curves. The solid curve is on average lower with AUPR = 0.724

whereas the dashed curve has AUPR = 0.773. (right) Corresponding PRG curves,

where the situation has reversed: the solid curve has AUPRG = 0.714 while the dashed

curve has a lower AUPRG of 0.687.
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5. Concluding remarks

Methodological recommendations

We recommend practitioners use the F -Gain score instead of the F -score to
make sure baselines are taken into account properly and averaging is done on
the appropriate scale. If required the FGβ score can be converted back to an Fβ

score at the end.

The second recommendation is to use Precision-Recall-Gain curves instead of
PR curves, and the third to use AUPRG which is easier to calculate than AUPR
due to linear interpolation, has a proper interpretation as an expected F -Gain
score and allows performance assessment over a range of operating points.

To assist practitioners we are making R, Matlab and Java code to calculate
AUPRG and PRG curves available at
http://www.cs.bris.ac.uk/~flach/PRGcurves/. We are also
working on closer integration of AUPRG as an evaluation metric in OpenML and
performance visualisation platforms such as ViperCharts .
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5. Concluding remarks

Closing comments

As future work we mention the interpretation of AUPRG as a measure of ranking
performance: we are working on an interpretation which gives non-uniform
weights to the positives and as such is related to Discounted Cumulative Gain. A
second line of research involves the use of cost curves for the FGβ score and
associated threshold choice methods.
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